Buderus-trade.ru

Теплотехника Будерус
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Работа тока. Закон Джоуля-Ленца

Работа тока. Закон Джоуля-Ленца

Экспериментально установлено, что количество теплоты, выделившееся при прохождении электрического тока по проводнику, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого шел ток: . Это утверждение носит название закона Джоуля-Ленца.

Вывести данную зависимость можно и из теоретических соображений. Силы, перемещающее заряды по проводнику, совершают работу. Эту работу называют работой тока. Работа электрического тока на участке цепи, как следует из определения напряжения, A=qU, где q — электрический заряд, проходящий по участку цепи, а U — напряжение на участке.

Учитывая, что q = It, где I — сила тока в проводнике, а t — время прохождения электрического тока, для работы тока получим A=IUt. Эта формула для работы справедлива в любом случае при любом действии электрического тока (тепловом, механическом, химическом и т.д.). Причем, если участок цепи не является однородным, то работу совершает не только стационарное электрическое поле, но и сторонние силы, и полная работа определяется по формуле A=I(φ1φ2±ε)t.

Если R — сопротивление однородного участка цепи, то, используя закон Ома для участка цепи, можно получить формулу для расчета работы тока: .

Если единственной причиной электрического сопротивления являются  неупругие столкновения заряженных частиц с частицами окружающей среды, то работа электрического поля по поддержанию электрического тока равна количеству теплоты, выделяющемуся в проводнике при прохождении электрического тока .

На практике проще использовать ту формулу, в которой больше сохраняющихся величин. Если соединение параллельное, то на резисторах одинаковое напряжение, если последовательное соединение, то одинаковой оказывается сила тока.

Если в цепи есть электродвигатель, то энергия электрического тока, во-первых, расходуется на совершение механической работы — полезная работа Aмех, во-вторых, затрачивается на нагревание обмоток электродвигателя и соединительных проводов — теряемая энергия Q. В этом случае коэффициент полезного действия можно рассчитать как .

Единица работы электрического тока в СИ — джоуль (Дж). 1 Дж представляет работу тока, эквивалентную механической работе в 1 Дж.

Мощность тока

Скорость совершения работы тока на данном участке цепи характеризует мощность тока. Мощность тока определяют по формуле или N = IU. Данная формула также носит универсальный характер и может применяться не только для теплового действия тока.

Используя закон Ома для участка цепи, можно записать иначе формулу для мощности тока . В этом случае речь идет о тепловой мощности.

Единица мощности тока — Ватт: 1 Вт = Дж/с. Отсюда Дж = Вт·с.

Кроме того, применяют внесистемные единицы: киловатт-час или гектоватт-час: 1 кВт·ч = 3,6·10 6 Дж = 3,6 МДж; 1 гВт·ч = 3,6·10 5 Дж = 360 кДж.

Прямое применение закона Джоуля-Ленца невозможно, если сила тока изменяется со временем. В этом случае для поиска выделившегося тепла остается воспользоваться интегрированием (нахождением площади под графиком зависимости мощности от времени).

Если цепь содержит конденсаторы и требуется найти тепло выделившееся на резисторах при коммутации (замыкании/размыкании ключей), то удобно применить закон сохранения энергии с учетом работы источников тока.

Для измерения мощности тока существуют специальные приборы — ваттметры.

На большинстве электрических приборов указываются значения их мощности. Но надо понимать, что на эти значения устройства выходят только при подсоединении к расчетному (номинальному) напряжению. Здесь синонимом слова номинальное выступает (проектное, расчетное, то есть то, в котором устройство долго будет работать в нормальном режиме). Соответственно такие значения мощности, силы тока тоже называют номинальными. Например, лампочка, на которой написано (60 Вт, 220В), будет потреблять мощность 60Вт, при включении в сеть с напряжением 220 В. Она будет гореть и при меньшем напряжении, но только более тускло, потребляя меньшую мощность. Какую именно, можно рассчитать, зная поданное напряжение и сопротивление лампы.

Читайте так же:
Можно ли укоротить провод датчика температуры теплого пола

Тепловое действие тока: закон Джоуля-Ленца, примеры

Двигаясь в любом проводнике, электрический ток передает ему какую-то энергию, из-за чего проводник нагревается. Энергетическая передача осуществляется на уровне молекул: в результате взаимодействия электронов тока с ионами или атомами проводника часть энергии остается у последнего.

Тепловое действие тока приводит к более быстрому движению частиц проводника. Тогда его внутренняя энергия возрастает и трансформируется в тепловую.

Формула расчета и ее элементы

Тепловое действие тока может быть подтверждено разными опытами, где работа тока переходит во внутреннюю проводниковую энергию. При этом последняя возрастает. Затем проводник отдает ее окружающим телам, то есть осуществляется теплопередача с нагреванием проводника.

Формула для расчета в этом случае следующая: A=U*I*t.

Количество теплоты можно обозначить через Q. Тогда Q=A или Q=U*I*t. Зная, что U=IR, получается Q=I 2 *R*t, что и было сформулировано в законе Джоуля-Ленца.

Закон теплового действия тока — закон Джоуля-Ленца

Проводник, где протекает электрический ток, изучали многие ученые. Однако, самых заметных результатов удалось добиться Джеймсу Джоулю из Англии и Эмилию Христиановичу Ленцу из России. Оба ученых работали отдельно и выводы по результатам экспериментов делали независимо один от другого.

Они вывели закон, позволяющий оценить тепло, получаемое в результате действия тока на проводник. Его назвали законом Джоуля-Ленца.

Рассмотрим на практике тепловое действие тока. Примеры возьмем следующие:

  1. Обычную лампочку.
  2. Нагревательные приборы.
  3. Предохранитель в квартире.
  4. Электрическую дугу.

Лампочка накаливания

Тепловое действие тока и открытие закона способствовали развитию электротехники и увеличению возможностей для использования электричества. То, как применяются результаты исследований, можно рассмотреть на примере обычной лампочки накаливания.

Она устроена таким образом, что внутри протягивается нить, изготовленная из вольфрамовой проволоки. Этот металл является тугоплавким с высоким удельным сопротивлением. При проходе через лампочку осуществляется тепловое действие электрического тока.

Энергия проводника трансформируется в тепловую, спираль нагревается и начинает светиться. Недостаток лампочки заключается в больших энергетических потерях, так как лишь за счет незначительной части энергии она начинает светиться. Основная же часть просто нагревается.

Чтобы лучше это понять, вводится коэффициент полезного действия, который демонстрирует эффективность работы и преобразования в электроэнергию. КПД и тепловое действие тока используются в разных областях, так как имеется множество устройств, изготовленных на основании этого принципа. В большей степени это нагревательные приборы, электрические плиты, кипятильники и другие подобные аппараты.

Устройство обогревательных приборов

Обычно в конструкции всех приборов для нагревания есть металлическая спираль, в функцию которой и входит нагрев. Если нагревается вода, то спираль устанавливается изолированно, и в таких приборах предусматривается соблюдение баланса между энергией из сети и тепловым обменом.

Перед учеными постоянно ставится задача по снижению энергетических потерь и поиску лучших путей и наиболее эффективных схем их внедрения, чтобы уменьшить тепловое действие тока. Используется, например, способ повышения напряжения во время передачи энергии, благодаря чему сокращается сила тока. Но такой способ, в то же время, понижает безопасность функционирования линий электропередач.

Другим исследовательским направлением является выбор проводов. Ведь именно от их свойств зависят потери тепла и другие показатели. Кроме того, при работе нагревательных приборов происходит большое выделение энергии. Поэтому спирали изготавливаются из специально предназначенных для этих целей, способных выдержать высокие нагрузки, материалов.

Квартирные предохранители

Чтобы улучшить защиту и обезопасить электрические цепи, используются особые предохранители. В роли главной части выступает проволока из легкоплавкого металла. Она проходит в пробке из фарфора, имеет винтовую нарезку и контакт в центре. Пробку вставляют в патрон, расположенный в фарфоровой коробке.

Читайте так же:
Розетка регулятор теплого пола

Свинцовая проволока является частью общей цепи. Если тепловое действие электрического тока резко возрастет, сечение проводника не выдержит, и он начнет плавиться. В результате этого сеть разомкнется, и не случится токовых перегрузок.

Электрическая дуга

Электрическая дуга является довольно эффективным преобразователем электрической энергии. Она используется при сварке металлических конструкций, а также служит мощным световым источником.

В основу устройства входит следующее. Берут два угольных стержня, подсоединяют провода и прикрепляют их в изолирующих держателях. После этого стержни подключают к источнику тока, который дает малое напряжение, но рассчитан на большую силу тока. Подключают реостат. Угли в городскую сеть включать запрещается, так как это может стать причиной пожара. Если коснуться одним углем о другой, то можно заметить, как сильно они раскалятся. Лучше не смотреть на это пламя, потому что оно вредно для зрения. Электрическую дугу используют в печах для плавки металла, а также в таких мощных осветительных приборах, как прожекторы, кинопроекторы и прочее.

Закон джоуля ленца его значение для электроприемников. Тепловое действие тока: закон Джоуля-Ленца, примеры

Закон Джоуля Ленца в интегральной форме в тонких проводах:

Если сила тока изменяется со временем, проводник неподвижен и химических превращений в нем нет, то в проводнике выделяется тепло.

— Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Преобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах. Тот же эффект в электрических машинах и аппаратах приводит к непроизвольным затратам энергии (потере энергии и снижении КПД). Тепло, вызывая нагрев этих устройств, ограничивает их нагрузку; при перегрузке повышение температуры может вызвать повреждение изоляции или сокращение срока службы установки.

В формуле мы использовали:

Напряжение в проводнике

Сила тока в проводнике

Двигаясь в любом проводнике, электрический ток передает ему какую-то энергию, из-за чего проводник нагревается. Энергетическая передача осуществляется на уровне молекул: в результате взаимодействия электронов тока с ионами или атомами проводника часть энергии остается у последнего.

Тепловое действие тока приводит к более быстрому движению частиц проводника. Тогда его возрастает и трансформируется в тепловую.

Формула расчета и ее элементы

Тепловое действие тока может быть подтверждено разными опытами, где работа тока переходит во внутреннюю проводниковую энергию. При этом последняя возрастает. Затем проводник отдает ее окружающим телам, то есть осуществляется теплопередача с нагреванием проводника.

Формула для расчета в этом случае следующая: A=U*I*t.

Количество теплоты можно обозначить через Q. Тогда Q=A или Q=U*I*t. Зная, что U=IR, получается Q=I 2 *R*t, что и было сформулировано в законе Джоуля-Ленца.

Закон теплового действия тока — закон Джоуля-Ленца

Проводник, где протекает изучали многие ученые. Однако, самых заметных результатов удалось добиться из Англии и Эмилию Христиановичу Ленцу из России. Оба ученых работали отдельно и выводы по результатам экспериментов делали независимо один от другого.

Они вывели закон, позволяющий оценить тепло, получаемое в результате действия тока на проводник. Его назвали законом Джоуля-Ленца.

Рассмотрим на практике тепловое действие тока. Примеры возьмем следующие:

  1. Обычную лампочку.
  2. Нагревательные приборы.
  3. Предохранитель в квартире.
  4. Электрическую дугу.

Лампочка накаливания

Тепловое действие тока и открытие закона способствовали развитию электротехники и увеличению возможностей для использования электричества. То, как применяются результаты исследований, можно рассмотреть на примере обычной лампочки накаливания.

Она устроена таким образом, что внутри протягивается нить, изготовленная из вольфрамовой проволоки. Этот металл является тугоплавким с высоким удельным сопротивлением. При проходе через лампочку осуществляется тепловое действие электрического тока.

Читайте так же:
Определение коэффициента теплопроводности воздуха вблизи нагретой электрическим током нити

Энергия проводника трансформируется в тепловую, спираль нагревается и начинает светиться. Недостаток лампочки заключается в больших энергетических потерях, так как лишь за счет незначительной части энергии она начинает светиться. Основная же часть просто нагревается.

Чтобы лучше это понять, вводится который демонстрирует эффективность работы и преобразования в электроэнергию. КПД и тепловое действие тока используются в разных областях, так как имеется множество устройств, изготовленных на основании этого принципа. В большей степени это нагревательные приборы, электрические плиты, кипятильники и другие подобные аппараты.

Устройство обогревательных приборов

Обычно в конструкции всех приборов для нагревания есть металлическая спираль, в функцию которой и входит нагрев. Если нагревается вода, то спираль устанавливается изолированно, и в таких приборах предусматривается соблюдение баланса между энергией из сети и тепловым обменом.

Перед учеными постоянно ставится задача по снижению энергетических потерь и поиску лучших путей и наиболее эффективных схем их внедрения, чтобы уменьшить тепловое действие тока. Используется, например, способ повышения напряжения во время благодаря чему сокращается сила тока. Но такой способ, в то же время, понижает безопасность функционирования линий электропередач.

Другим исследовательским направлением является выбор проводов. Ведь именно от их свойств зависят потери тепла и другие показатели. Кроме того, при работе нагревательных приборов происходит большое выделение энергии. Поэтому спирали изготавливаются из специально предназначенных для этих целей, способных выдержать высокие нагрузки, материалов.

Квартирные предохранители

Чтобы улучшить защиту и обезопасить электрические цепи, используются особые предохранители. В роли главной части выступает проволока из легкоплавкого металла. Она проходит в пробке из фарфора, имеет винтовую нарезку и контакт в центре. Пробку вставляют в патрон, расположенный в фарфоровой коробке.

Свинцовая проволока является частью общей цепи. Если тепловое действие электрического тока резко возрастет, сечение проводника не выдержит, и он начнет плавиться. В результате этого сеть разомкнется, и не случится токовых перегрузок.

Электрическая дуга

Электрическая дуга является довольно эффективным преобразователем электрической энергии. Она используется при сварке металлических конструкций, а также служит мощным световым источником.

В основу устройства входит следующее. Берут два угольных стержня, подсоединяют провода и прикрепляют их в изолирующих держателях. После этого стержни подключают к источнику тока, который дает малое напряжение, но рассчитан на большую силу тока. Подключают реостат. Угли в городскую сеть включать запрещается, так как это может стать причиной пожара. Если коснуться одним углем о другой, то можно заметить, как сильно они раскалятся. Лучше не смотреть на это пламя, потому что оно вредно для зрения. Электрическую дугу используют в печах для плавки металла, а также в таких мощных осветительных приборах, как прожекторы, кинопроекторы и прочее.

Закон Джоуля-Ленца определяет количество теплоты, выделяющейся в проводнике, обладающим сопротивлением за время t, при прохождении через него электрического тока.

Q = a*I*2R*t, где
Q — колическтво выделяемой теплоты (в Джоулях)
a — коэффициент пропорциональности
I — сила тока (в Амперах)
R — Сопротивление проводника (в Омах)
t — Время прохождения (в секундах)

Закон Джоуля-Ленца объясняет, что электрический ток — это заряд, который перемещается под действием электрического поля. При этом поле совершает работу, а ток обладает мощностью и выделяется энергия. Когда эта энергия проходит по неподвижному металлическому проводнику, то она становится тепловой, так как направлена на нагревание проводника.

В дифференциальной форме закон Джоуля-Ленца выражается как объемная плотность тепловой мощности тока в проводнике будет равна произведению удельной электрической проводимости на квадрат напряженности электрического поля.

Применение закона Джоуля-Ленца

Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии.
Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

Читайте так же:
При поражение электрическим током тепловом солнечном ударе

Также закон Джоуля-Ленца влияет на выбор проводов для цепей. При неправильном подборе проводов возможен сильный нагрев проводника, а так же его . Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии. При правильном подборе проводов для стоит следовать нормативным документам.

  • Физическая энциклопедия

Между силой тока и напряжением существует прямо пропорциональная зависимость, описанная законом Ома. Этот закон определяет связь силы тока, напряжения и сопротивления на участке электрической цепи.

Вспомните, ток и напряжение.
— Электрический ток — это упорядоченное течение заряженных частиц (электронов). Для количественного определения используется величина I, называемая силой тока.
— Напряжение U — это разность потенциалов на концах участка электрической цепи. Именно это различие заставляет двигаться электроны, подобно потоку жидкости.

Сила тока измеряется в амперах. В электрических цепях силу тока определяют прибором амперметр. Единицей напряжения является , измерить напряжение в цепи можно с помощью вольтметра. Соберите простейшую электрическую цепь из источника тока, резистора, амперметра и вольтметра.

При замыкании цепи и прохождении по ней тока запишите показания приборов. Измените напряжение на концах сопротивления. Вы увидите, что показания амперметра будут расти с увеличением напряжения и наоборот. Такой опыт демонстрирует прямо пропорциональную зависимость между силой тока и напряжением.

Энергия направленного движения заряженных частиц расходуется на нагрев кристаллической решетки проводника.

2. Чему равно количество теплоты, получаемое кристаллической решеткой проводника от направленно движущихся заряженных частиц?

3. Сформулируйте закон Джоуля-Ленца. Запишите его математическое выражение.

времени прохождения тока по проводнику.

4. Дайте определение мощности электрического тока. Приведите формулу для расчета этой мощности.

5. Как зависит мощность, выделяемая в проводниках с током, от типа их соединения?

Закон Джоуля – Ленца – закон физики, определяющий количественную меру теплового действия электрического тока. Сформулирован этот закон был в 1841 году английским учёным Д. Джоулем и совершенно отдельно от него в 1842 году известным русским физиком Э. Ленцем. Поэтому он получил своё двойное название — закон Джоуля – Ленца.

Определение закона и формула

Словесная формулировка имеет следующий вид: мощность тепла, выделяемого в проводнике при протекании сквозь него , пропорционально произведению значения плотности электрического поля на значение напряженности.

Математически закон Джоуля — Ленца выражается следующим образом:

где ω — количество тепла, выделяемого в ед. объема;

E и j – напряжённость и плотность, соответственно, электрического полей;

σ — проводимость среды.

Физический смысл закона Джоуля – Ленца

Закон можно объяснить следующим образом: ток, протекая по проводнику, представляет собой перемещение электрического заряда под воздействием . Таким образом, электрическое поле совершает некоторую работу. Эта работа расходуется на нагрев проводника.

Другими словами, энергия переходит в другое свое качество – тепло.

Но чрезмерный нагрев проводников с током и электрооборудования допускать нельзя, поскольку это может привести к их повреждению. Опасен сильный перегрев при проводов, когда по проводниках могут протекать достаточно большие токи.

В интегральной форме для тонких проводников закон Джоуля – Ленца звучит следующим образом: количество теплоты, которое выделяется в единицу времени в рассматриваемом участке цепи, определяется как произведение квадрата силы тока на сопротивление участка.

Читайте так же:
Принцип действия автоматических воздушных выключателей с тепловым расцепителем

Математически эта формулировка выражается следующим образом:

при этом Q – количество выделившейся теплоты;

I – величина тока;

R — активное сопротивление проводников;

t – время воздействия.

Значение параметра k принято называть тепловым эквивалентом работы. Величина этого параметра определяется в зависимости от разрядности единиц, в которых выполняются измерения значений, используемых в формуле.

Закон Джоуля-Ленца имеет достаточно общий характер, поскольку не имеет зависимости от природы сил, генерирующих ток.

Из практики можно утверждать, что он справедлив, как для электролитов, так проводников и полупроводников.

Область применения

Областей применения в быту закона Джоуля Ленца – огромное количество. К примеру, вольфрамовая нить в лампе накаливания, дуга в электросварке, нагревательная нить в электрообогревателе и мн. др. Это наиболее широко распространенный физический закон в повседневной жизни.

Презентация на тему Закон Джоуля-Ленца

Презентация на тему Презентация на тему Закон Джоуля-Ленца из раздела Физика. Доклад-презентацию можно скачать по ссылке внизу страницы. Эта презентация для класса содержит 14 слайдов. Для просмотра воспользуйтесь удобным проигрывателем, если материал оказался полезным для Вас — поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций TheSlide.ru в закладки!

  • Главная
  • Физика
  • Закон Джоуля-Ленца

Слайды и текст этой презентации

Закон Джоуля-ЛенцаАвтор: преподаватель физики и информатики Попова О.А.КГУ «Глубоковский технический колледж» УО ВКО п. Верхнеберезовскийинтегрированный урок по

Автор: преподаватель физики и информатики Попова О.А.
КГУ «Глубоковский технический колледж» УО ВКО
п. Верхнеберезовский

интегрированный урок по физике, информатике и спецтехнологии сварочного производства

План урока: Проверка знаний; Закон Джоуля - Ленца; Применение теплового действия электрического тока. Лампа накаливания; Применение закона

Проверка знаний;
Закон Джоуля — Ленца;
Применение теплового действия электрического тока. Лампа накаливания;
Применение закона Джоуля — Ленца в сварочном производстве;
Закрепление пройденного материала;
Решение качественной задачи с помощью MS Excel;
Анализ полученных результатов.

Фронтальный опрос:1. Как запустить табличный процессор? 2. Как задать адрес ячейки? 3. Как ввести в ячейку формулу?4.

1. Как запустить табличный процессор?

2. Как задать адрес ячейки?

3. Как ввести в ячейку формулу?

4. Как вставить диаграмму?

5. Как выбрать тип диаграммы?

6. Как вывести график и таблицу на печать?

Открытие закона Джоуля - Ленца Джеймс Джоуль(английский физик) в 1841 году

Открытие закона Джоуля — Ленца

Джеймс Джоуль
(английский физик)
в 1841 году

Закон Джоуля - Ленца:A = UIt В неподвижных проводниках вся работа тока идет лишь на нагревание проводников,

Закон Джоуля — Ленца:

В неподвижных проводниках вся работа тока идет лишь на нагревание проводников, т. е. на то, чтобы увеличь их внутреннюю энергию.
Учитывая, что
U = IR (из закона Ома для участка цепи)

Q = I2RtКоличество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.закон

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.

закон Джоуля – Ленца:

1. Q = I2Rt3. Q = U2t/R 2. Q = UIt

Видео фрагмент «закон Джоуля - Ленца»

Видео фрагмент «закон Джоуля — Ленца»

Вольфрамовая спиральСтеклянный баллонЦоколь лампыОснование цоколяПружинящий контактУстройство современной лампочки накаливания21345

Вольфрамовая спираль
Стеклянный баллон
Цоколь лампы
Основание цоколя
Пружинящий контакт

Устройство современной
лампочки накаливания

Фронтальный опрос:Две проволоки одинаковой длины и сечения - железная и медная - соединены параллельно. В

Две проволоки одинаковой длины и сечения — железная и медная — соединены параллельно.
В какой из них выделится большее количество теплоты?

2. Спираль электрической плитки укоротили. Как изменится количество выделяемой в ней теплоты, если плитку включить в то же напряжение?

3. В чем проявляется тепловое действие тока? При каких условиях оно наблюдается?

4. Почему при прохождении тока проводник нагревается?

5. Почему, когда по проводнику пропускают электрический ток, проводник удлиняется?

Задача №1Какое количество теплоты выделится в течение часа в проводнике сопротивлением 10 Ом при силе тока 2

Задача №1
Какое количество теплоты выделится в течение часа в проводнике сопротивлением 10 Ом при силе тока 2 А?

Задача №2
Какое сопротивление нужно включить в сеть с напряжением 220 В, чтобы в нем за 10 мин выделилось 66 кДж теплоты?

Зоны контактной сварки

Зоны контактной сварки

Д/З: п. 54, вопросы устно; Ф-8, А.В.Перышкин Домашнее задание: Подведение итогов урока.Определите количество теплоты, которое дает электроприбор

п. 54, вопросы устно; Ф-8, А.В.Перышкин

Подведение итогов урока.

Определите количество теплоты, которое дает электроприбор мощностью 2 кВт за 10 мин работы?

Рефлексия
Что сегодня вам понравилось на уроке?

Спасибо за внимание! Автор: преподаватель физики и информатики Попова О.А.ГУ ПЛ №3, п. Верхнеберезовский, 2011

Спасибо за внимание!

Автор: преподаватель физики и информатики Попова О.А.
ГУ ПЛ №3, п. Верхнеберезовский, 2011

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector