Buderus-trade.ru

Теплотехника Будерус
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Прибор учета электроэнергии

Прибор учета электроэнергии

Счётчик электрической энергии (электрический счётчик) — прибор для измерения расхода электроэнергии переменного или постоянного тока (обычно в кВт·ч или А·ч).

Содержание

История

История создания счетчиков прекрасно иллюстрирует метод, характерный для изобретений XIX века. Самые разные исследователи независимо и беспрестанно изучали электромагнетизм, внося собственную лепту в создание и последующее развитие счетчиков электроэнергии. Вот лишь некоторые этапы продолжительного пути прогресса. Всплеск теоретических открытий в области явлений, устанавливающих единую связь между магнитными и электрическими свойствами вещества, уже в 1-ой половине XIX века.

Когда XIX век перевалил за половину, к авторам теоретических трудов присоединились практики. За самый непродолжительный период выданы патенты на гидротурбину, счетчик, трансформатор тока, двигатель, динамо-машину, лампу. Как считали первооткрыватели, само время дарило просветление, позволяя почти в одно и то же время свершаться схожим открытиям в противоположных концах света. В легкости времени был, к примеру, уверен создатель индукционного электрического счетчика Отто Титус Блати, венгр по происхождению, который также являлся со изобретателем трансформатора тока. Господа Аньош Йедлик и Вернер фон Сименс, каждый в свое время, придумали динамо-машину. Что, в свою очередь, позволило превратить электричество в коммерческий продукт массового спроса. Электроэнергия, применявшаяся для освещения, потребовала приемлемых основ измерения и стандартизации учета.

С развитием систем распределения электроэнергии на пути создания больших систем встал главный недостаток цепей постоянного тока — невозможность изменения разницы потенциалов. И давний спор сторонников распределительных сетей постоянного и переменного тока окончательно решился в пользу последних. Чему способствовало изобретение трансформатора (1885 год. Необходимость учета электрической энергии переменного тока привела в попытке решить эту задачу, к целому ряду открытий. Созданию индукционных счетчиков электроэнергии предшествовало обнаружение эффекта вращающегося электрического поля (Галилео Феррарис — 1885 год, Николя Тесла — 1888 год, Шелленбергер — 1888 год). Первый счетчик электроэнергии для переменного тока разработан Оливером Б. Шелленбергером в 1888 году. Уже в 1889 году запатентован «Электрический счётчик для переменных токов» венгра Отто Титуц Блати (для компании «Ganz»). А в 1894 году Шелленбергер по заказу компании «Westinghouse» создал индукционный счетчик ватт-часов. Счетчик ватт-часов активной энергии переменного тока типа «А» появился в 1899 году, создатель Людвиг Гутман. Был дан старт непрерывным усовершенствованиям индукционных счетчиков электроэнергии. Счетчики, берущие начало от счетчика Блати и индукционных счетчиков Феррариса, вследствие великолепной надежности и малой себестоимости, до сих пор массово изготовляются и производят большую часть измерений электроэнергии.

Принцип работы

Для учёта активной и реактивной электроэнергии переменного тока служат индукционные одно- и трёхфазные приборы, для учёта расхода электроэнергии постоянного тока (электрический транспорт, электрифицированная железная дорога) — электродинамические счётчики. Количество электроэнергии, пропорциональное числу оборотов подвижной части прибора, регистрируется счётным механизмом.

В электрическом счетчике индукционной системы подвижная часть (алюминиевый диск) вращается во время потребления электроэнергии, расход которой определяется по показаниям счётного механизма. Диск вращается за счёт вихревых токов, наводимых в нём магнитным полем катушки счётчика, — магнитное поле вихревых токов взаимодействует с магнитным полем катушки счётчика.

Виды и типы

Индукционные (механические) счетчики электроэнергии из представленных на рынке – самые дешевые, качественные и простые. Но вытесняются из-за отдельных недостатков (отсутствие дистанционного автоматического снятия показаний, однотарифность, погрешности учета) электронными счетчиками.

Цифровые (электронные) счетчики электроэнергии – на порядок дороже, но гораздо удобнее для не обладающих техническими навыками пользователей, долговечнее (межповерочный период 4-16 лет) и куда точнее в подсчете израсходованной энергии.

Гибридные счетчики электроэнергии – редко используемый промежуточный вариант с цифровым интерфейсом, измерительной частью индукционного или электронного типа, механическим вычислительным устройством.

Счетчики также делятся на: трехфазные и однофазные, однотарифные и многотарифные (до 48 тарифных планов), с обычной и упрощенной схемой снятия показаний (наличие импульсного выхода для дистанционного учета), с механическим отображением или цифровой индикацией показаний, на образцовые суперточные и обычные (по числовому эквиваленту уровня точности).

Ссылки

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Прибор учета электроэнергии» в других словарях:

коллективный (общедомовой) прибор учета — Средство измерения, используемое для определения объемов (количества) коммунальных ресурсов, поданных в многоквартирный дом. Т.е. прибор учета электроэнергии, который фиксирует потребление электроэнергии не только всех квартир в многоквартирном… … Справочник технического переводчика

индивидуальный прибор учета — Средство измерения, используемое для определения объемов (количества) потребления коммунальных ресурсов потребителями, проживающими в одном жилом помещении многоквартирного дома или в жилом доме или нежилом помещении. Иными словами это счетчик… … Справочник технического переводчика

Прибор учёта электроэнергии — Современный двухтарифный счётчик Устройство классического электросчётчика Счётчик электрической энергии (электрический счётчик) прибор для измерения расхода электроэнергии переменного или постоянного тока (обычно в кВт·ч или А·ч). С … Википедия

Читайте так же:
Схема устройства для остановки электронного счетчика электроэнергии

интеллектуальный учет электроэнергии — [Интент] Учет электроэнергии Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические,… … Справочник технического переводчика

Телекарт-Прибор — ООО «Телекарт Прибор» Тип Приборостроительное предприятие Девиз компании Технол … Википедия

устройство — 2.5 устройство: Элемент или блок элементов, который выполняет одну или более функцию. Источник: ГОСТ Р 52388 2005: Мототранспортны … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 54964-2012: Оценка соответствия. Экологические требования к объектам недвижимости — Терминология ГОСТ Р 54964 2012: Оценка соответствия. Экологические требования к объектам недвижимости оригинал документа: 3.35 «серые» стоки: Канализационные стоки, образующиеся после купания, мытья посуды и стирки. Определения термина из разных… … Словарь-справочник терминов нормативно-технической документации

СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО "Газпром". Термины и определения — Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО "Газпром". Термины и определения: 3.1.31 абонент энергоснабжающей организации : Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… … Словарь-справочник терминов нормативно-технической документации

характеристика — 3.1 характеристика (characteristic): Качественное или количественное свойство элемента. Примечание Примеры характеристик давление, температура, напряжение. Источник: ГОСТ Р 51901.11 2005: Менеджмент риска. Исследование опасности и… … Словарь-справочник терминов нормативно-технической документации

техническое — 3.1.5 техническое диагностирование (диагностирование): Процесс определения технического состояния объекта технического диагностирования с определенной точностью. Результатом диагностирования является заключение о техническом состоянии объекта… … Словарь-справочник терминов нормативно-технической документации

Способ обогрева трехфазного индукционного счетчика в щите раздельного учета электроэнергии

Изобретение относится к области приборостроения и может быть использовано на различных объектах промышленного и сельскохозяйственного назначения для повышения достоверности определения реального потребления электрической энергии. Технический результат — снижение энергоемкости. Для достижения данного результата в щите раздельного учета электроэнергии включают электрообогрев нижней поверхности карболитового корпуса трехфазного индукционного счетчика в зависимости от температуры окружающей среды путем контактного нагрева многоэлектродного композиционного электрообогревателя. При этом осуществляют автоматическое регулирование температуры обогрева в зависимости от температуры окружающей среды.

Изобретение относится к области электротехники, в частности к способам обогрева трехфазных индукционных счетчиков в щитах раздельного учета электроэнергии, и может быть использовано на различных объектах промышленного и сельскохозяйственного назначения преимущественно в холодное время года для обеспечения достоверного определения реального потребления электрической энергии.

Известен способ обогрева трехфазного индукционного счетчика в щите раздельного учета электроэнергии, включающий электрообогрев области карболитового корпуса трехфазного индукционного счетчика в зависимости от температуры окружающей среды композиционным электрообогревателем, изготовленным на основе химически связанной керамики с электропроводными добавками, и автоматическое регулирование температуры обогрева в зависимости от температуры окружающей среды. Электрообогрев производят путем лучистого нагрева боковых поверхностей карболитового корпуса трехфазного индукционного счетчика через воздушные зазоры между этими поверхностями и двумя одинаковыми оппозитными включенными последовательно элементами композиционного электрообогревателя, мощность каждого из которых составляет 70-75 Вт. Автоматическое регулирование температуры электрообогрева выполняют в зоне расположения этого счетчика управляемой электронной терморегуляцией в требуемом диапазоне температур с использованием датчиков температуры (Анализ различных способов обогрева трехфазных счетчиков в щитах раздельного учета электроэнергии / М.В. Халин [и др.]: под ред. П.И.Госькова // Труды Сибирского отделения Академии инженерных наук Российской Федерации: выпуск №1 / Алтайский государственный технический университет им. И.И.Ползунова. — Барнаул: изд-во АлтГТУ, 2000. — С.50-55).

Недостатками описанного способа являются повышенная энергоемкость процесса обогрева трехфазного индукционного счетчика в щите раздельного учета электроэнергии вследствие использования значительной мощности для электрообогрева и пониженная эффективность этого процесса вследствие тепловых потерь при нагреве боковых поверхностей карболитового корпуса через воздушные зазоры между этими поверхностями и элементами композиционного электрообогревателя, так как коэффициент теплопроводности воздуха на порядок ниже, чем карболита, и воздушный зазор выполняет функцию изолирующего барьера при теплопередаче.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ обогрева трехфазного индукционного счетчика в щите раздельного учета электроэнергии, включающий электрообогрев области карболитового корпуса трехфазного индукционного счетчика в зависимости от температуры окружающей среды гибкими композиционными электрообогревателями пластинчатого типа, изготовленными на основе бутилкаучука согласно ТУ 3442-001-02067824-98, и автоматическое регулирование температуры обогрева в зависимости от температуры окружающей среды. Электрообогрев производят путем лучистого нагрева боковых поверхностей карболитового корпуса трехфазного индукционного счетчика через воздушные зазоры между этими поверхностями и двумя одинаковыми оппозитными включенными параллельно гибкими композиционными электрообогревателями, мощность каждого из которых составляет 30-35 Вт. Автоматическое регулирование температуры электрообогрева выполняют в зоне расположения этого счетчика управляемой электронной терморегуляцией в требуемом диапазоне температур с использованием датчиков температуры (Анализ различных способов обогрева трехфазных счетчиков в щитах раздельного учета электроэнергии / М.В.Халин [и др.]: под ред. П.И.Госькова // Труды Сибирского отделения Академии инженерных наук Российской Федерации: выпуск №1 / Алтайский государственный технический университет им. И.И.Ползунова. — Барнаул: изд-во АлтГТУ, 2000. — С.50-55).

Читайте так же:
Как правильно снять показания счетчика электроэнергии день ночь нева

Недостатками вышеописанного способа являются повышенная энергоемкость процесса обогрева трехфазного индукционного счетчика в щите раздельного учета электроэнергии вследствие использования значительной мощности для электрообогрева и пониженная эффективность этого процесса вследствие тепловых потерь при нагреве боковых поверхностей карболитового корпуса через воздушные зазоры между этими поверхностями и композиционными электрообогревателями, так как коэффициент теплопроводности воздуха на порядок ниже, чем карболита, и воздушный зазор выполняет функцию изолирующего барьера при теплопередаче.

Предлагаемым изобретением решается задача снижения энергоемкости и повышения эффективности процесса обогрева трехфазного индукционного счетчика в щите раздельного учета электроэнергии.

Для достижения этого технического результата в способе обогрева трехфазного индукционного счетчика в щите раздельного учета электроэнергии, включающем электрообогрев области карболитового корпуса трехфазного индукционного счетчика в зависимости от температуры окружающей среды композиционным электрообогревателем и автоматическое регулирование температуры обогрева в зависимости от температуры окружающей среды, согласно изобретению используют многоэлектродный композиционный электрообогреватель мощностью до 30 Вт, а электрообогрев производят путем контактного нагрева нижней поверхности карболитового корпуса трехфазного индукционного счетчика, закрепляющейся в щите раздельного учета электроэнергии.

Снижение энергоемкости процесса обогрева трехфазного индукционного счетчика в щите раздельного учета электроэнергии обусловлено сокращением мощности электрообогрева более чем в два раза вследствие использования контактного нагрева нижней поверхности карболитового корпуса трехфазного индукционного счетчика многоэлектродным композиционным электрообогревателем мощностью до 30 Вт.

Повышение эффективности процесса обогрева трехфазного индукционного счетчика в щите раздельного учета электроэнергии обусловлено значительным сокращением тепловых потерь при контактном нагреве нижней поверхности карболитового корпуса трехфазного индукционного счетчика, так как коэффициент теплопроводности бутилкаучука, на основе которого выполнен многоэлектродный композиционный электрообогреватель, равен коэффициенту теплопроводности карболита, и перенос тепловой энергии в форме теплоты направленно используется для равномерного обогрева счетчика. При этом низкотемпературный поверхностно-распределительный локальный электрообогрев, как и заявленный электрообогрев области карболитового корпуса трехфазного индукционного счетчика путем контактного нагрева нижней поверхности карболитового корпуса этого счетчика, закрепляющейся в щите раздельного учета электроэнергии, является наиболее энергоэффективным и экономичным видом электрообогрева в сельскохозяйственном производстве (Низкотемпературные электрообогреватели в сельскохозяйственном производстве / Л.С.Герасимович [и др.]: под общ. ред. Л.С.Герасимовича. — Минск: Ураджай, 1984. — С.18).

Способ обогрева трехфазного индукционного счетчика в щите раздельного учета электроэнергии осуществляется следующим образом.

Предварительно внутри щита раздельного учета электроэнергии, изготовленного в соответствии с ТУ 3433-006-02067824-2002 и размещаемого в открытых, неотапливаемых помещениях и в регионах с низкими сезонными температурами, который укомплектован электрическим трехфазным индукционным счетчиком, изготовленным по ГОСТ 6570-96 и ТУ 25.01.172-75, ТУ 25.01.392-75, устанавливают многоэлектродный композиционный электрообогреватель пластинчатого типа, выполненный на основе бутилкаучука и соответствующий ТУ 3468-007-02067824-2003 и ГОСТ Р МЭК 335-1-94. Многоэлектродный композиционный электрообогреватель подключают к сети с напряжением 220 В через автоматический выключатель.

Производят электрообогрев области карболитового корпуса, а именно нижней поверхности карболитового корпуса трехфазного индукционного счетчика, закрепляющейся в щите раздельного учета электроэнергии, в зависимости от температуры окружающей среды путем контактного нагрева многоэлектродным композиционным электрообогревателем, а также автоматическое регулирование температуры обогрева в зависимости от температуры окружающей среды. Автоматическое регулирование температуры электрообогрева выполняют в зоне расположения трехфазного индукционного счетчика путем управляемой электронной терморегуляции в необходимом для соответствующего региона диапазоне температур, например, терморегулятором с датчиками контроля температуры. Многоэлектродный композиционный электрообогреватель используют мощностью до 30 Вт, что является достаточным для обеспечения положительной температуры на счетном механизме трехфазного индукционного счетчика при температуре окружающей среды до -30°С, а в случае отказа автоматического регулирования температуры не приведет к выходу из строя этого счетчика, так как для трехфазного индукционного счетчика допустимое значение превышения температуры составляет 40°С (Протокол приемочных испытаний № ИЛ — 01/0079: щит учета электроэнергии ЩУЭ-А-250-УХЛ 2: утв. Госстандартом России: Алтайский ЦСМ 02.03.2003. — С.8, п.8.2.1.).

Таким образом, использование заявленного изобретения позволяет обеспечить эксплуатацию трехфазного индукционного счетчика в климатических условиях с температурой окружающей среды до -30°С при достоверном определении реального потребления электрической энергии, сокращение мощности электрообогрева более чем в два раза, повышение эффективности процесса обогрева трехфазного индукционного счетчика вследствие направленного использования тепловой энергии для контактного нагрева нижней поверхности его карболитового корпуса и, следовательно, для равномерного обогрева счетчика в целом.

Способ обогрева трехфазного индукционного счетчика в щите раздельного учета электроэнергии, включающий электрообогрев области карболитового корпуса трехфазного индукционного счетчика в зависимости от температуры окружающей среды композиционным электрообогревателем и автоматическое регулирование температуры обогрева в зависимости от температуры окружающей среды, отличающийся тем, что используют многоэлектродный композиционный электрообогреватель мощностью до 30 Вт, а электрообогрев производят путем контактного нагрева нижней поверхности карболитового корпуса трехфазного индукционного счетчика, закрепляющейся в щите раздельного учета электроэнергии.

Читайте так же:
Соэ электросчетчик межповерочный интервал

Электрические счётчики

Приборы учета электроэнергии появились одновременно с началом коммерческой эксплуатации электросетей. В самых древних сетях использоваться постоянный ток (США, Т. Эдисон), а счетчик работал на осаждении металла из гальванической ванны.

В период контроля образец взвешивали и по весу рассчитывали количество потребленной энергии. Это было очень неудобно. Когда началась эра переменного тока (Н. Тесла и Дж. Вестингауз), стали использовать индукционный счетчик, широко применяемый и по сей день, в эпоху умной электроники и компьютеров.

В этой статье будет рассмотрено, какие бывают электросчетчики, их устройство, достоинства, недостатки, и области применения.

Счетчики с крутящимся диском

Это самый первый вид счетчиков для переменного тока. Появился в 1888 году, изобретен американским инженером Оливером Б. Шелленбергером. По сути дела, это ваттметр переменного тока, только он показывает не мощность, а работу переменного тока (энергию) и снабжен механизмом десятичного счетчика на несколько разрядов.

Устройство однофазного электросчетчика

В однофазном счетчике используют две катушки: катушку напряжения и катушку тока. Катушка напряжения содержит около 2000 витков тонкого провода, а катушка тока – несколько витков толстого. В своих сердечниках они создают примерно одинаковые магнитные потоки. Мощность является произведением тока на напряжение P = I * U. Переменный магнитный поток от катушек с сердечником и магнитный поток от токов Фуко в алюминиевом диске создают вращающий момент, пропорциональный мощности. (Эффект вращающегося магнитного поля был впервые обнаружен Н. Тесла.)

В этом смысле счетчик работает как аналоговый компьютер, вычисляющий произведение двух величин. Кроме того, он еще и суммирует данные, что равносильно вычислению интеграла и сохраняет этот результат в механической памяти (положение колес счетчика).

Для калибровки счетчика добавляют постоянный магнит, создающий тормозной момент. Положение магнита регулируется и фиксируется при помощи затяжки винтов. Кроме того, токовая катушка шунтируется добавочным сопротивлением из петли проволоки с высоким сопротивлением и регулирующей перемычкой. Диск через червячную передачу связан со счетчиком. Так устроен счетчик электроэнергии однофазный. Очень похоже устроен и трехфазный счетчик.

Счетчик прямого действия использует два комплекта катушек и два диска, работающих на общую ось. Поскольку мощности, потребляемые в разных фазах, не всегда одинаковы, а учет энергии должен быть точным, то катушки включаются по току в двух фазах, условно B и C, и по напряжению между фазами A, B и A, C. Такая схема обеспечивает правильное сложение мощностей по крутящему моменту. Таким образом устроены маломощные трехфазные счетчики.

Устройство трехфазного электросчетчика

Другая схема использует три трансформатора тока, каждый из которых включается в свою фазу. С диском в таком счетчике работают три пары катушек напряжения и тока, в результате мощности правильно складываются и учитываются. Есть также варианты подключения с разным числом трансформаторов тока и напряжения.

Схемы с трансформаторами токов используют в мощных цепях, с потреблением сотен киловатт. При этом первичной обмоткой трансформатора тока является участок шины с большим сечением, по которому могут проходить токи вплоть до килоампер. Спрятать такое устройство в корпус счетчика было бы совершенно невозможно.

Импульсные счетчики

Импульсный счетчик является, по сути дела, электронным счетчиком. В качестве датчиков величин в нем используется резистивный делитель напряжения и токовый шунт – тоже калиброванный резистор с малым сопротивлением. Электроника счетчика выполняет задачу преобразования величин с наименьшей потерей точности к виду, удобному для вычисления мощности. Это делается с помощью схем гальванической развязки. Дальше вычисления могут быть выполнены аналоговой схемой (или цифровой).

Импульсный электросчетчикАналоговая схема содержит конденсатор, который заряжается до некоторого порогового напряжения, соответствующего (путем калибровки схемы) наименьшей единице учета энергии, например, десятой или сотой доле кВт. Как только интегрирующая схема достигает порога, срабатывает компаратор, сравнивающий его с опорным уровнем, его сигнал усиливается и приводит в движение шаговый двигатель механического счетчика. Так учитывается энергия.

После этого интегрирующая цепь сбрасывается в исходное состояние путем разряда конденсатора и все начинается сначала. Чем больший ток потребляется в цепи, тем быстрее заряжается конденсатор и чаще срабатывает шаговый двигатель счетчика.

Электронный счетчик электроэнергии может быть однофазным или трехфазным и без ошибок считает энергию при любой неравномерности по фазам. Есть электронные счетчики, предназначенные для работы с трансформаторами тока и напряжения.

Читайте так же:
Руководство счетчика электроэнергии меркурий 230

Цифровые счетчики

Цифровой счетчик использует делители напряжения и шунты, полностью аналогичные тем, которые используют в импульсных счетчиках. Также преобразуются сигналы, с гальванической развязкой, чтобы обезопасить электронные схемы от повреждений. Можно сказать, что цифровой счетчик является продолжением развития электронного. Разница заключается в том, что данные о токе и напряжении перемножает микропроцессор, он же записывает их периодически в энергонезависимую память и обслуживает дисплей, на котором пользователи читают показания.

Фактически являясь компьютером, встроенный контроллер цифрового счетчика позволяет ввести множество невиданных ранее функций. Цифровые счетчики могут использоваться как трехфазные счетчики электроэнергии, по точности заметно превосходят индукционный электросчетчик. К дополнительным функциям можно отнести многотарифность, возможность вычислять стоимость потребленной энергии за разные периоды прямо в приборе.

Принципиальная схема работы цифрового электросчетчика

В цифровом счетчике может быть использован сетевой интерфейс для связи с сервером энергокомпании. Если в счетчик встроен PLC-модем (Power Line Communication), то никаких дополнительных устройств не требуется. Данные учета будут переданы прямо по проводам электросети в базу данных поставщика и оттуда использованы бухгалтерскими программами для работы с клиентами.

Правда, для этого энергокомпания должна использовать соответствующую технологию. Вполне возможно, что одними проводами сети тут не обойдется, и могут потребоваться дополнительные каналы связи. Но это уже дело техники, к потребителю никакого отношения не имеющее.

Технический прогресс помогает и недобросовестным потребителям. Электросчетчик с пультом помогает воровать электроэнергию. В этом случае используется тот факт, что контролирующие организации не в состоянии разобраться в сложной электронной начинке счетчика и обнаружить в нем модуль Bluetooth или другой радиоинтерфейс.

Тем более, что и монтаж на плате хитро маскируется, так что и инженер-профессионал может быть введен в заблуждение. При помощи команд по дополнительному интерфейсу можно замедлить или вообще остановить счетчик простым нажатием кнопки. И также легко возобновить его правильную работу. При этом все пломбы остаются в полной неприкосновенности.

Выход мог бы найден очень просто: запретом потребителям использовать несертифицированные счетчики, но умельцы такого уровня подделают любой сертификат с семью королевскими печатями и голографическими наклейками.

СОВЕТ! Потребителям, использующим счетчики с пультами, следует помнить об административной ответственности, при оценке ущерба свыше 250000 руб, переходящей в уголовную. Правда, это придется еще устанавливать, доказывать. Но контролирующие органы постоянно работают над этим, так что…

Обнаружив несоответствие показаний у клиентов и ближайшего контрольного счетчика, энергокомпания может начать выборочную поверку электросчетчиков (они имеют на это право). В случае обнаружения «хитростей» будет составлен акт и по нему начнется административное или даже уголовное производство.

Энергокомпания, в случае заметных убытков, найдет на стороне достаточно квалифицированных специалистов для обнаружения «закладок». Так что, чем большей популярностью будут пользоваться счетчики с пультом, тем больше шансов, что за них возьмутся всерьез.

Подробнее о принципе работы электросчетчиков можно почитать тут.

Какой счетчик лучше?

Все приборы учета электроэнергии имеют свои плюсы и минусы. Индукционные электросчетчики хорошо зарекомендовали себя и относятся к самым дешевым. Можно сказать, что они проверены временем – работают более ста лет. Электронные счетчики электроэнергии, которые будут выпускаться исключительно в цифровом варианте, так как цифровая техника полностью вытеснит аналоговую, тем не менее будут применяться все чаще.

Дисковый электросчетчик против цифрового

Когда будет развита надлежащая инфраструктура (муниципальные вычислительные сети), они станут обязательными даже в сельской местности. Автоматизированный учет дойдет и до воды и газа, а электронные электросчетчики просто будут первыми в этом ряду.

Сейчас потребитель сам может решать, какие виды электросчетчиков выгоднее использовать в быту. Электронные счетчики дороже, но имеют большой межповерочный интервал: 16 лет. Традиционные счетчики с диском поверяются чаще, раз в 5–8 лет. Однако, они стоят дешевле.

С другой стороны, цифровые приборы обладают множеством удобных функций для учета и запоминания данных, некоторые из них могут подключаться к компьютеру для ведения домашнего учета расхода энергии (съема показаний), при помощи многотарифности позволяют экономить до 20% расходов. Индукционные счетчики этого не позволяют делать и абонент платит «на всю катушку».

Устройство и принцип действия трехфазных счётчиков для измерения активной энергии

Двухэлементные счетчики используются для учета активной энергии в трехфазных трехпроводных цепях переменного тока.

Трехэлементными счетчиками учитывается активная и реактивная энергия в трехфазных четырехпроводных цепях переменного тока.

Кроме того, трехэлементные счетчики применяются также для учета реактивной энергии в трехфазных трехпроводных цепях переменного тока.

В качестве вращающих элементов как в двухэлементных, так и в трехэлементных счетчиках используются вращающие элементы одноэлементных индукционных счетчиков.

Как в двухэлементных, так и в трехэлементных счетчиках диски вращающих элементов укрепляются на одной оси. Это позволяет получать общий вращающий момент подвижной части счетчика, равный алгебраической сумме вращающих моментов отдельных элементов.

Читайте так же:
Как передать по телефону показания счетчика электроэнергии мосэнергосбыт

Таким образом, независимо от количества применяемых вращающих элементов в счетчиках устанавливается один счетный механизм.

На рис.2.2.1,а показано принципиальное конструктивное выполнение двухэлементного счетчика, а на рис.2.2.1,б — трехэлементного счетчика.

Двухэлементные однодисковые и трехэлементные двухдисковые счетчики практически не применяются из-за увеличения погрешностей счетчиков вследствие влияния вращающих элементов друг на друга.

Рисунок 2.2.1. Конструктивное выполнение счетчиков.

Рассмотрим конструкцию трехфазных счетчиков на примере счетчика САЗУ-И680М (рис.2.2.2.). Для наглядности счетчик изображен без кожуха, таблички и крышки зажимной коробки.

Механизм счетчика монтируется на литой стойке из немагнитного сплава 1, которая расположена в прямоугольном цоколе 2. Цоколь закрывается кожухом с застекленным окном. Снизу к цоколю крепится зажимная коробка 3 с крышкой. Механизм счетчика состоит из следующих узлов: два вращающих элемента, два тормозных магнита 5, подвижная система в виде оси 6 с двумя алюминиевыми дисками 7, опоры подвижной системы (подшипник и подпятник), счетный механизм 8. На оси счетчика укреплен противосамоходный флажок 9.

Рисунок 2.2.2. Механизм трехфазного счетчика САЗУ-И680М

Вращающий элемент представляет собой магнитную систему, на которой расположены: параллельная обмотка 4, последовательная 10 и дополнительная 11 обмотки, короткозамкнутые витки 12. Магнитная система снабжена также поворотной лопаточкой 13, балансировочными винтами-регуляторами и стальной пластиной 14, вставленной под каркас параллельной обмотки. Дополнительная обмотка замкнута на петлю из никелиновой или манганиновой проволоки 15. Сопротивление петли можно изменять путем перемещения винтового зажима 16.

Дополнительная обмотка с проволочной петлей и короткозамкнутые витки создают дополнительные потери на пути полного потока последовательной цепи. От этих потерь зависит угол внутреннего сдвига между рабочими магнитными потоками. Как было показано ранее, этот угол должен быть равен 90°.

Разрезание короткозамкнутых витков и перемещение винтового зажима вверх ведет к увеличению внутреннего угла сдвига.

При малых нагрузках силы трения в опорах и счетном механизме могут стать соизмеримыми с электромагнитными силами и вызвать недопустимое увеличение погрешности. Для компенсации сил трения прибегают к созданию небольшого дополнительного момента, называемого компенсационным, за счет ответвления от основного магнитного потока ФU небольшой его части Фк. В описываемом счетчике поток Фк ответвляется в поворотную лопаточку 13. В результате взаимодействия расщепленных потоков и возникает компенсационный момент, значение которого не зависит от нагрузки и регулируется углом поворота лопаточки. Регулировку производят при малых нагрузках.

Под действием компенсатора трения в счетчике может возникнуть нежелательное явление самохода, т. е. вращение диска при отсутствии нагрузки. Противосамоходное устройство состоит из флажка 9 и пластины 14. Под действием сил притяжения, возникающих между ними, диск счетчика останавливается. Устранение самохода и регулировку чувствительности производят путем подгибания и отгибания флажка 9, установленного вблизи пластины 14.

Два постоянных магнита служат для создания тормозного момента. Крепление магнита позволяет перемещать, его в радиальном направлении. Этим обеспечивается регулировка тормозного момента, а следовательно, и частоты вращения. При приближении магнитов к центру частота вращения уменьшается.

Одним из наиболее ответственных узлов счетчика является подпятник. Существуют однокамневые и двухкамневые подпятники (рис.2.2.3, а и б); двухкамневый более износостоек и поэтому получил широкое применение. На нижний конец оси насажена оправа с агатовым или корундовым камнем. Второй (опорный) камень амортизированный пружиной, заключен в съемной втулке. Между двумя камнями расположен полированный стальной шарик.

Конструкция подшипника показана на рис.2.2.3, в. Верхняя часть оси представляет втулку из латуни или полимерного материала. Сверху в нее входит стальная игла, пропущенная через отверстие в бронзовом колпачке и закрепленная в иглодержателе. Подшипник счетчиков старых выпусков заполнялся маслом. В современных счетчиках подшипник работает без смазки, что обеспечивает постоянный момент трения.

Рисунок 2.2.3. Опоры счетчика:

а — однокамневый подпятник;

б — двухкамневый подпятник;

Счетный механизм (рис.2.2.4.) представляет собой счетчик оборотов роликового типа, отградуированный в киловатт-часах (с десятичным множителем). Вращение диска через червячную пару и зубчатую передачу сообщается ролику с нанесенными цифрами. Когда ролик совершит полный оборот, то с помощью трибки, сидящей на оси, он передаст движение следующему ролику, и тот продвинется на одну десятую оборота.

Третий ролик сделает уже одну десятую оборота при полном обороте второго и т. д. Чаще всего роликовый счетный механизм имеет пять или шесть роликов.

Ролики прикрыты алюминиевым щитком с вырезанными цифровыми окошками. На щитке-табличке наносятся паспортные данные и заводской номер счетчика. Счетный механизм работает без смазки.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector