Buderus-trade.ru

Теплотехника Будерус
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Малогабаритные измерительные трансформаторы тока для счетчиков электроэнергии и систем контроля качества

Малогабаритные измерительные трансформаторы тока для счетчиков электроэнергии и систем контроля качества

Токовые трансформаторы (измерительные трансформаторы тока) Т02хх-Т11хх предназначены для работы в цепях переменного тока и имеют линейную передаточную характеристику во всем диапазоне входных токов.

Выпускаются в соответствии с техническими требованиями ЮНШИ.671221.001 ТТ.

Для удобства выбора, основные типоразмеры трансформаторов сведены в Таблицу 1. Подробная информация по каждому типоразмеру доступна по переходу на соответствующую страницу из столбца «наименование». Сравнить общие характеристики всех типоразмеров можно в сводной таблице.

Таблица 1. Малогабаритные тороидальные токовые трансформаторы (измерительные трансформаторы тока) на магнитопроводах из аморфных и нанокристаллических сплавов для электронных счетчиков, устройств измерения, управления, защиты и контроля.

Сводная таблица токовых трансформаторов, выпускаемых ООО ВП АИСТ
НаименованиеТок примененияТочность, %ИсполненияДС иммун.Мин. отв.
под шину, мм
Цена опт., руб.ВыпускОписание
На п.п.На шинуС шиной
Т02ххдо 140 А0,1; 0,5рис. 1рис. 65.5от 54,5с 2000смотреть
Т03ххдо 160 А0,1; 0,5; 1рис.2, 9, 10рис. 1,4рис. 6; 7; 8; 9; 10+8-11; 11.3от 39с 2011смотреть
Т04ххдо 140 А0,1; 0,5; 1рис.10рис. 1,4рис. 6; 7; 8; 10+6-8; 5.5от 43с 2009смотреть
Т05хххдо 85 А0,5рис. 1,4рис. 6, 105.5от 45с 2005смотреть
Т10ххдо 180 А0,1; 0,5; 1рис. 4рис. 3, 4+8-12; 11,5от 61с 2008смотреть
Т11ххдо 450 А0,05; 0,2; 0,5рис. 5рис. 4, 5+6. 14от 115с 2009смотреть

Варианты исполнения тороидальных трансформаторов тока Т02хх-Т11хх:

Без встроенного витка (на шину)
Трансформаторы
Рис. 1
Исполнение К/0 (Т02;Т03;Т04;Т05)
Трансформаторы
Рис. 2
Исполнение З/0 (Т03)
Трансформаторы
Рис. 3
Исполнение З/0 (Т10)
Трансформаторы
Рис. 4
Исполнение Т/0 (Т03;Т04;Т05;Т10;Т11)
Трансформаторы
Рис. 5
Исполнение З/0 (Т11)
Со встроенным витком (с шиной)
Трансформаторы
Рис. 6
Исполнение К/60Ф(П)-20
Трансформаторы
Рис. 7
Исполнение Т/100-16
Трансформаторы
Рис 8
Исполнение Т/50М4-20
Трансформаторы
Рис. 9
Исполнение З/5к-20(3:3000)
Трансформаторы
Рис. 10
Исполнение Т/20к-20

Токовые трансформаторы (измерительные трансформаторы тока) серии Т02хх-Т11хх предназначены для работы в цепях переменного тока и имеют линейную передаточную характеристику во всем диапазоне входных токов.

Трансформаторы

Рис. 11 Токовый трансформатор Т04
со встроенной шиной из 5 витков
(показан без заливки)

Вывода выполняются либо гибким проводом НВ4-0.12 600в длиной 65. 400 мм., либо делаются жесткими для печатного монтажа. Стандартный коэффициент передачи всех трансформаторов 1:3000, но, по желанию заказчика, может составлять от 1:1000 до 1:3000. Для небольших входных токов можно первичную обмотку выполнить в 2, 3 и более витков (рис. 9; 11). При этом коэффициент трансформации снизится соответственно в 2, 3 и более раз без существенных изменений точностных параметров трансформатора, при этом расположение проводника внутри окна трансформатора роли не играет.

Группы трансформаторов по электромагнитным свойствам

Трансформаторы каждого типоразмера (кроме Т05) выпускаются 4-х групп и различаются электромагнитными свойствами и областью применения.

Основная группа предназначена для работы в цепях переменного тока 30. 100 Гц с небольшим уровнем подмагничивания. Применяется для построения подавляющего большинства измерительных систем, включая электронные счетчики электроэнергии класса точности 1%. Обозначаются Т02,Т03. Т11.

Группа АС предназначена для работы в условиях отсутствия подмагничивания и разработана для применения в составе прецизионных измерительных систем. Имеет очень большую индуктивность и насыщение в малых полях, минимальные фазовые сдвиги, что позволяет строить высокоточные измерительные системы, включая электронные счетчики электроэнергии 0,1; 0,2 и 0,5%. Допускает работу на частотах до 10 кГц без существенного изменения основных параметров. Обозначаются Т02АС, Т03АС. Т11АС.

Группа ДС0 безразлична к подмагничиванию, вызванному несиметрией входного тока. При применении трансформаторов групп ДС0 следует иметь в виду, что рабочий ток для них указан с учетом постоянной составляющей. Трансформаторы допускают работу на частотах до 10 кГц без существенного изменения основных параметров. Имеют очень линейную характеристику в широком диапазоне подмагничивания, что позволяет строить на них измерительные системы 1% с малой чуствительностью к ассиметрии входного тока. Для работы в цепях измерения реактивной мощности требует установки подстраиваемой RC цепи для компенсации начального фазового сдвига. Обозначаются Т02ДС0, Т03ДС0. Т11ДС0.

Группа ДС безразлична к подмагничиванию, вызванному несиметрией входного тока. При применении трансформаторов групп ДС следует иметь в виду, что ток для них также указан с учетом постоянной составляющей. Трансформаторы допускают работу на частотах 30. 100 Гц. Имеют весьма линейную характеристику в широком диапазоне подмагничивания и большие токи насыщения. При работе в цепях измерения реактивной мощности не позволяют получить очень высокую точность, т.к. фазовый сдвиг зависит от величины подмагничивания и не может быть скомпенсирован RC цепью полностью, а потому трансформаторы преимущественно применяются для систем измерения токов или активной мощности в условиях сильных искажений входных токов. Обозначаются Т02ДС, Т03ДС. Т11ДС.

Токовые трансформаторы всех групп могут применяться в составе электронных счетчиков электроэнергии, устройствах измерения, контроля, защиты и управления. Температурный диапазон применения трансформаторов составляет -40. +85 градусов цельсия.

Аварийные режимы

При применении трансформаторов, следует учесть, что по мере увеличения входного тока, ЭДС (действующее значение), развиваемая трансформатором будет сначала подниматься до макс. значения, указанного в таблице, а затем снижаться. Это связано с достижением макс. магнитной индукции в магнитопроводе, в результате которого трансформатор входит в режим насыщения. При работе трансформатора в режиме насыщения, форма вых. сигнала не повторяет входную, а имеет четко выраженные искажения при достижении насыщения. Величина нерабочей зоны трансформатора напрямую зависит от амплитуды входного тока. Токи, превышающие токи насыщения не приводят к выходу трансформаторов Т02хх-Т11хх из строя.

Трансформаторы

Рис. 12 Искажение
формы выходного сигнала
при подмагничивании
постоянным током

Намагничивание магнитопровода трансформатора, приводящее к искажению выходного сигнала, возможно также при однополярном приращение входных токов или несимметрией полуволн входных токов (рис. 12). Работоспособность трансформатора восстановится после такого воздействия спустя некоторое время, напрямую зависящее от величины тока и необходимое для размагничивания магнитопровода трансформатора. Если возможен режим подмагничивания — рекомендуем выбирать трансформатор с очень хорошим запасом по току насыщения или применять трансформаторы групп ДС и ДС0, которые имеют возможность работать в не нулевом результирующем магнитном поле. Отметим, что однополярное намагничивание магнитопровода, а также обрыв нагрузки не приводит к выходу трансформаторов серии Т02хх-Т11хх.

Читайте так же:
Как рассчитать количество электроэнергии по счетчику

Общие замечания по применению

Значения Rн указанные в технических характеристиках не являются обязательными. При указанном в таблице значении приводятся точностные х-ки трансформатора. Влияние сопр. нагрузки на точностные х-ки и диапазон применения по входному току подробно рассмотрены в статье «Принципы подбора параметров трансформатора тока и его нагрузки».

Значения начальной амплитудной и угловой погрешности весьма легко компенсируются при калибровке и существенного влияния на точность измерительной системы не имеют. Данные погрешности обусловлены потерями в сердечнике, статической погрешностью коэффициента трансформации, ненулевыми значениями сопротивления обмотки и нагрузки. Неравномерность амплитудной и угловой погрешности не могут быть скомпенсированы при калибровке (кроме микропроцессорной обработки), поэтому должны учитываться при выборе трансформаторов. Для компенсации начальной угловой погрешности трансформаторов ДС и ДС0 достаточно применить интегрирующую RC цепь, включенную после нагрузочного резистора. Подстройка реальной RC цепи обычно ведется изменением R (либо линейка резисторов с перемычками, либо подстроечный резистор). Номинальное значение такой RC цепи можно рассчитать по формуле: (кОм)*(мкФ)=0,01014*(Rобм+Rн)/L, где Rобм (Ом) и L(Гн) можно взять из таблиц с техническими характеристиками трансформатора. Установка RC цепи для других групп не требуется.

В наименование трансформатора при заказе входит: типоразмер, группа, предельный диапазон токов применения, длина выводов, конструктивное исполнение, наличие первичного витка и его тип. Если коэффициент трансформации отличается от 1:3000, значение коэффициент трансформации указывается после типа витка в круглых скобках, например Т03-90А-85-К/0(2500): Трансформатор Т03, (точный), с током применения до 90А, с длиной выводов 85мм, в пластмассовом корпусе, без первичного витка, с коэффициент трансформации 1:2500. Пример формирования наименования трансформатора при заказе изображен на Рис. 13.

Трансформаторы

Рис. 12 Формирование
наименования трансформатора
при заказе

В графе «конструктивное исполнение» может стоять значения: К — пластмассовый не герметичный корпус; Т — изоляция термоусадочной трубкой; З-корпусное герметичное исполнение. В графе «тип первичного витка» могут стоять значения: 0 — без витка (виток устанавливается заказчиком самостоятельно);50М4-20 или 50М4-16 — виток под ток 50А с отвверстием под винт М4 и межцентовым рассоянием 20мм или 16мм ; 60М4-20 или 60М4-16 под ток 60А с отв. под винт М4 и межцентовым рассоянием 20мм или 16мм; 60Ф-20 — фигурный виток под ток 60А и зажимную колодку с посадочным размером 20мм; 60П-20 — прямой виток под ток 60А и зажимную колодку с посадочным размером 20мм. и т.д., включая виток из круглой шины для запайки в печатную плату. Возможна разработка оснастки под виток Заказчика.

Пример заказа:

Т03АС-30А-110-К/0Трансформатор Т03АС, (особо точный), диапазон применения до 30А, с длинной выводов 110 мм, в корпусе, без витка
Т03-90А-65-Т/50М4-20Трансформатор Т03, точный, диапазон применения до 90А, с длинной выводов 65мм, безкорпусной, с витком на 50А под винт М4 с межцентровым расстоянием 20мм

Если возникают затруднения при определении параметров трансформатора, или указанные характеристики не устраивают — рекомендуем ознакомится с разделом «Применение трансформаторов тока», или рекомендуем обратиться к нам с запросом по электронной почте . В запросе обязательно укажите требуемое отверстие трансформатора для токоведущей шины, номинальный и максимальный измеряемый ток, измерительное напряжение и входное сопротивление устройства измерения, габариты (если важно), другие параметры которые для Вас важны. Можете просто объяснить задачу, которая перед Вами стоит. В этом случае мы обеспечим Вас бесплатной консультацией консультацией с расчетом характеристик трансформатора, моделированием передаточной и точностной характеристик трансформатора применительно к Вашим условиям эксплуатации. Обратите внимание — цена таких заказных трансформаторов не отличается от цен стандартных трансформаторов и зависит только от объема закупки, т.е. денег за разработку измерительного токового трансформатора мы не берем!

Трансформаторы тока для электросчетчиков – характеристики и варианты подключения

При эксплуатации энергетических систем разного типа часто возникают ситуации, требующие осуществить перевод электрических величин в аналоги с определенными соотношениями.

Трансформаторы тока для электросчетчиков позволяют значительно расширить стандартные пределы измерений приборами учёта.

Номинальное напряжение трансформатора тока

Одним из основных параметров, относящихся к трансформаторам тока для электрических счётчиков, является уровень номинального напряжения, который указывается в паспорте на прибор. Номинальные значения напряжения варьируется от 0.66кВт до 1150кВт:

  • 0,66 кВт;
  • 6.0 кВт;
  • 10 кВт;
  • 15 кВт;
  • 20 кВт;
  • 24 кВт;
  • 27 кВт;
  • 35 кВт;
  • 110 кВт;
  • 150 кВт;
  • 220 кВт;
  • 330 кВт;
  • 500 кВт;
  • 750 кВт;
  • 1150 кВт.

Номинальные значения уровня первичного тока на электрической цепи обозначают токовые показатели на первичной трансформаторной обмотке.

Параметры вторичного номинального тока — это стандартные показатели на обмотке вторичного типа. Определение таких токовых потоков осуществляется по номинальным значениям мощности и напряжения. При этом первичный тип обмотки подключается к источнику электрической энергии, а замыкание вторичной обмотки приходится на устройства измерительного или защитного типа, с низкими показателями внутреннего сопротивления.

Класс точности

При правильном выборе токового трансформаторного устройства у потребителя появляется реальная возможность подключать измерительные и защитные приборы к высоковольтным электрическим линиям. Уровень класса точности – одна из наиважнейших характеристик, указывающих на измерительную погрешность, которая не должна быть выше, чем параметры по нормативным документам.

Класс точности определяется несколькими основными факторами, включая погрешности по току и углу, а также показатели относительной полной погрешности. Первые два понятия всегда характеризуются током намагничивания.

принцип трансформации тока

В приборах промышленного назначения используется несколько классов точности:

  • 0.1
  • 0.5
  • 1.0
  • 3.0
  • 10Р

В соответствии с действующим на сегодняшний день в нашей стране ГОСТом, класс точности должен быть ориентирован на токовые погрешности, поэтому для показателей в ±40′ предполагается класс 0.5, а для ±80′ – класс 1.0. Следует отметить, что классы 3.0 и 10Р по существующим правилам не нормируются.

Наличие в маркировке буквенного обозначения «S» свидетельствует о классе точности в пределах 0.01-1.2. Класс 10Р используется в защитных цепях, а нормирование осуществляется в соответствии с относительной полной погрешностью не более десяти процентов. Допускается применение приборов с классом точности 1.0, но только если электрический счетчик обладает классом точности в две единицы.

Для учёта в коммерческой сфере уровень класса точности должен составлять 0.5S, а для учёта технического – 1.0S.

Номинальный ток вторичной обмотки

Строение вторичной обмотки у токовых трансформаторов, которые предназначены для напряжения не более тысячи вольт, имеет некоторые отличия. На высоковольтном приборе устанавливается как минимум две вторичные обмотки.

Читайте так же:
Работы по монтажу трехфазного счетчика

Принцип их действия аналогичен функционированию повышающего трансформатора. Вне зависимости от уровня мощности первичной обмотки, номинальные показатели тока на вторичной обмотке, как правило, стабильно составляют 5А.

первичная и вторичная обмотка

Номинальные значения вторичного тока «I2н» указываются в таблице прилагаемого к устройству паспорта. Номинальные токи на вторичной обмотке равны единице или 5А, но вторые показатели допускаются исключительно в устройствах с первичными токами, не превышающими 4000А.

Однако, допускается также изготовление современных токовых трансформаторных приборов по индивидуальным заказам с номинальными показателями токов вторичного типа на уровне 2.0А или 2,5А.

виды счетчиковСуществуют нормы и стандарты, по которым срок эксплуатации электросчетчика ограничен определенным периодом.

Инструкцию по монтажу однофазного счетчика смотрите здесь.

Варианты установки индукционного счетчика подробно рассмотрены в этом материале.

Номинальный ток первичной обмотки

трансформатор тока

В зависимости от конструкционных особенностей первичной обмотки, трансформаторы тока могут быть не только многовитковыми, но также одновитковыми и шинными.

На сегодняшний день наибольшее распространение получил второй вариант исполнения устройства.

Одновитковые модели токовых трансформаторов представлены разновидностями, не имеющими индивидуальную первичную обмотку или с наличием индивидуальной обмотки первичного типа.

Для одновитковых моделей без собственной первичной обмотки характерно встроенное, шинное или разъемное выполнение. Первичный токовый уровень, в этом случае, всегда определяется в соответствии со стандартизированными номинальными токами.

Токи номинальные первичного типа «I1н» указываются в паспортных табличных данных трансформаторного прибора, и определяют стандартные коэффициенты трансформации в виде соотношения номинальных токовых показателей на двух видах обмотки устройства.

Подбирать коэффициент трансформации необходимо в строгом соответствии с расчетной нагрузкой, а также с обязательным учетом возможности функционирования установленного устройства в аварийных ситуациях. Токовый номинал на первичной обмотке не может быть меньше, чем максимальные рабочие значения тока эксплуатируемой электрической установки: I2ном.тт>Imах.эу.

Схема подключения

Рассмотрим, как подключить трансформатор тока. В зависимости от конструктивных особенностей трансформатора тока для электрических счётчиков различается несколько видов таких приборов:

  • токовые трансформаторы, предназначенные для наружного монтажа в ОРУ;
  • токовые трансформаторы, предназначенные для закрытого монтажа распределительных устройств;
  • токовые трансформаторы встроенного типа;
  • токовые трансформаторы, предназначенные для монтажа на изоляторы проходного типа;
  • токовые трансформаторы в переносном или мобильном исполнении.

Токовыми трансформаторами обеспечивается полноценная изоляция эксплуатируемых силовых электрических цепей. Измерительное устройство в быту – гарантия безопасной работы, поэтому специалисты рекомендуют использовать так называемую гальваническую развязку. К недостаткам этого способа установки можно отнести достаточно большое количество электропроводов.

Подключение счетчика электрической энергии через токовые трансформаторы осуществляется посредством десятижильных кабелей. В конструкции применяются раздельные цепи, как на ток, так и напряжение. Стандартная схема установки предполагает обязательное подсоединение трех элементов электросчетчика с соблюдением правил полярности при прямом чередовании фаз относительно «U».

подключение прибора учета к трансформатору

В процессе самостоятельного монтажа измерительных приборов электрической энергии, токовые трансформаторы подключаются к цепным разрывам при помощи специальных, очень удобных в применении зажимов «Л-1» и «Л-2».

электрический щитокЭлектротехнический шкаф защищает счетчик от пыли, влаги, грязи. Щиток электрический под счетчик и автоматы – критерии выбора рассмотрим далее.

Знаете ли вы, что такое коэффициент трансформации счетчика электроэнергии? Читайте эту информацию, если интересно.

Видео на тему

Монтаж и эксплуатация счетчиков — Измерительные трансформаторы в цепях учета

В ЦЕПЯХ УЧЕТА
Точность учета электроэнергии во многом зависит от правильного выбора измерительных трансформаторов. У трансформаторов тока начало и конец первичной обмотки обозначены соответственно буквами Л и Л2 (линия), а начало и конец вторичной обмотки соответственно Mi и И2 (измерение). Зажимы Л и И однополярны. Это значит, что если в первичной цепи мощность направлена от Л, к Л^ (зажим Л является генераторным), то зажим Иг является также генераторным. Он должен быть подключен к началу последовательной обмотки счетчика. Отметим, что в распределительных устройствах принята установка трансформаторов тока так, чтобы зажим Л1 был обращен к сборным шинам. Поэтому зажим Л и соответственно зажим Их являются генераторными при положительном направлении мощности.
У встроенных трансформаторов тока однополярными являются «верх» и зажим А вторичной обмотки.
На паспортной табличке трансформатора тока указывается его коэффициент трансформации в виде отношения номинального первичного тока к номинальному вторичному току. Номинальный вторичный ток трансформаторов тока обычно равен 5 а. Таким же должен быть и номинальный ток счетчика, включаемого в его обмотку. В некоторых случаях для электроустановок напряжением 110 кВ и выше изготовляют трансформаторы тока с номинальным током вторичной обмотки 1 а.
Трансформатор тока выбирается по номинальному напряжению и по максимальной длительной нагрузке данного присоединения, которая должна быть не выше 110% номинального тока этого трансформатора. В то же время необходимо помнить, что при токе менее 20%
номинального увеличиваются погрешности как счетчика, так и трансформатора тока и счетчик недоучитывает энергию. При нагрузке менее 10% номинальной погрешность счетчика становится недопустимой. Перегрузка же счетчика на 10—20% вполне допустима и не вызывает увеличения его погрешности. Поэтому не следует устанавливать трансформатор тока с номинальным первичным током, значительно превосходящим нагрузку данного присоединения. Завышенным по коэффициенту трансформации считается такой трансформатор тока, у которого при 25%-ной загрузке силового трансформатора или линии ток во вторичной обмотке будет менее 0,5 а.
Пример 1. Трансформатор 320 ква с первичным напряжением
6,3 кв имеет первичный номинальный ток


По условиям термической и динамической устойчивости выбран трансформатор тока с коэффициентом трансформации 75/5 а. При 25%-ной загрузке силового трансформатора ток первичной обмотки будет:
Ток во вторичной обмотке
Таким образом, трансформатор тока выбран неправильно и должен быть заменен на трансформатор 50/5 а.
Действительный коэффициент трансформации трансформатора тока отличается от номинального на некоторую величину, а вектор вторичного тока, протекающего во внешней цепи, не совпадает с вектором первичного тока. Другими словами, трансформатор тока обладает погрешностью по току и по углу. Наибольшая допускаемая погрешность обмотки трансформатора тока определяет его класс точности. Расчетные счетчики включаются в обмотку трансформатора тока класса 0,5. Счетчики, предназначенные для технического учета,, могут подключаться к обмоткам трансформаторов тока класса 1.
Погрешность трансформатора тока зависит от величины его вторичной нагрузки. Под вторичной нагрузкой трансформатора тока понимают полное сопротивление его внешней вторичной цепи, равное сумме сопротивлений всех последовательно включенных обмоток измерено быть не менее 2,5 мм2, сечение алюминиевых жил — не менее 4 мм2. Сопротивление переходных контакте* принимают равным 0,1 ом.

Читайте так же:
Дистанционная передача показаний электрических счетчиков

Пример 2. Во вторичные обмотки класса 0,5 двух трансформаторов тока ТПФМ 200/5, соединенные в неполную звезду, включены счетчик активной энергии САЗ, счетчик реактивной энергии СРЗ и амперметр Э-30. Приборы расположены в коридоре управления распределительного устройства иа стенке ячейки. Длина соединительного провода от трансформатора тока до приборов (в один конец) равна 4 м. Провода медные сечением 2,5 мм2. Определить вторичную нагрузку трансформаторов тока.
Находим сопротивления приборов (см. также приложение 1).

Потребляемая мощность, в-а

Сопротивление обмотки, ом

Сопротивление соединительных проводов

сопротивление переходных контактов равно 0,1 ом.
Суммарное сопротивление нагрузки

при максимально допустимом сопротивлении 0,6 ом.
Параллельные обмотки счетчиков в сети напряжением выше 0,4 кв питаются через трансформаторы напряжения. Обычно применяются трехфазные трансформаторы напряжения с группой соединения 12.
Векторы первичных напряжений при этом совпадают по фазе с векторами соответствующих вторичных напряжений.
Можно использовать также два однофазных трансформатора напряжения, соединенные по схеме открытого треугольника. В этом случае конец обмотки высокого напряжения одного трансформатора соединяется с началом обмотки другого. Так же соединяются и обмотки низкого напряжения (рис. 9). Начало обмотки высокого напряжения обозначается буквой А, а конец—буквой X. У обмотки низкого напряжения соответствующие буквы — а их.
Номинальное вторичное междуфазное напряжение трансформаторов напряжения равно 100 в. Счетчики, подключаемые к ним, должны иметь номинальное напряжение также 100 в. Трансформаторы напряжения обладают погрешностью в коэффициенте трансформации и угловой погрешностью. Наибольшие допускаемые погрешности определяют класс точности трансформатора напряжения.
Этому классу точности соответствует номинальная нагрузка его вторичной цепи, выраженная в вольт-амперах. Счетчики должны присоединяться к трансформатору напряжения класса 0,5. Фактическая нагрузка его вторичной обмотки не должна превышать номинальную для данного класса точности. Кратковременные нагрузки во внимание не принимаются. К ним относятся двигатели заводки пружинных приводов, лампы освещения ячеек, приборы синхронизации, обмотки реле, на которые напряжение подается только при работе защиты или автоматики.
Чтобы определить нагрузку трансформатора напряжения, выписывают из каталогов или справочников мощности 5прИб, в-а, или Рприб, вт, которые потребляют параллельные обмотки приборов и реле, а также их коэффициенты мощности. Затем определяют суммарную нагрузку трансформатора напряжения или группы однофазных трансформаторов напряжения по формуле

— суммарные соответственно активные и реактивные мощности, потребляемые всеми параллельными катушками.

Таким образом, нагрузка трансформатора напряжения равна допустимой для данного класса точности.
Пример 3. В цепь трансформатора напряжения НТМИ-6 (класс 0,5 при SH = 80 в-а) включены три счетчика активной энергии САЗУ, три счетчика реактивной энергии СРЗУ, вольтметр Э-31 и реле .времени ЭВ-235. Нагрузки определяют по следующей таблице (потребляемые мощности приборов и реле взяты из приложения 1).

Для выбора сечения соединительных проводов необходимо рассчитать падение напряжения в них, которое не должно превышать

  1. 5%. По условиям механической прочности сечение медных проводов должно быть не менее 1,5 мм, сечение алюминиевых проводов — не менее 2,5 мм2.

Вторичная обмотка трансформатора напряжения защищается плавкими вставками на ток 0,1 а либо автоматом. Должна быть предусмотрена сигнализация, действующая при перегорании вставок или отключении автомата.
Измерительные трансформаторы должны проходить следующие виды эксплуатационных проверок: измерение сопротивления изоляции обмоток, испытание обмоток повышенным напряжением, снятие вольт-амперной характеристики (для трансформаторов тока).
Определение полярности обмоток трансформатора тока
Рис. 11. Определение полярности обмоток трансформатора тока.
Измерение сопротивления изоляции обмоток высокого напряжения и их испытание повышенным напряжением проводится одновременно с испытаниями изоляции высоковольтного оборудования распредустройства.
Перед вводом в эксплуатацию, кроме вышеперечисленного, необходимо проверить полярность зажимов у трансформаторов тока и однофазных трансформаторов напряжения, а также группу соединения у трехфазных трансформаторов напряжения.
Полярность зажимов обмоток трансформаторов тока проверяется с помощью магнитоэлектрического прибора с обозначенной полярностью обмотки и нулем в середине шкалы по схеме, приведенной на рис. 11. Источник постоянного тока, в качестве которого используется сухая батарейка или аккумулятор напряжением 4—6 в, подключается последовательно с добавочным сопротивлением к первичной обмотке трансформатора тока. При этом плюс батарейки подключается к зажиму Л1, а минус — к зажиму Л2. Зажим прибора, обозначенный « + », подключается к зажиму Иi вторичной обмотки трансформатора тока, а зажим «—» к зажиму И2. Замыкая и размыкая ключом К цепь первичной обмотки трансформаторов тока, наблюдают за отклонением стрелки прибора П. Если при замыкании первичной цепи стрелка прибора будет отклоняться вправо, а при размыкании — влево, то выводы JI% и Я) являются однополярными, т. е. маркировка зажимов выполнена правильно.

Рис. 13. Характеристика намагничивания исправного трансформатора тока / и трансформатора тока с закороченными витками //.
Характеристика намагничивания, представляющая зависимость напряжения на зажимах вторичной обмотки трансформатора тока от протекающего по ней тока намагничивания, является основной характеристикой, которая определяет исправность трансформатора тока.

Рис. 12. Снятие характеристики намагничивания трансформатора тока.
Для снятия характеристики намагничивания при разомкнутой первичной обмотке на зажимы вторичной обмотки трансформатора тока подается переменное напряжение через регулировочный автотрансформатор АТ (рис. 12).
Увеличивая ступенями напряжение, для каждого его значения фиксируют величину тока. При новом включении, таким образом, снимаются 10—12 точек и строится характеристика намагничивания. При плановых проверках снимаются 3—4 точки и проверяется их совпадение со снятой характеристикой (рис. 13).
При наличии короткозамкнутых витков характеристика намагничивания резко снижается, как показано на рис. 13. Снижение характеристики может быть обнаружено при ее сравнении с характеристикой, снятой ранее, или с характеристиками однотипных трансформаторов тока.
В процессе эксплуатации необходимо также производить замеры нагрузок вторичных цепей измерительных трансформаторов, а также измерение падения напряжения в соединительных проводах трансформатора напряжения.

Измерительные трансформаторы тока — назначение, устройство, виды конструкций

Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.

Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.

Читайте так же:
Электронный счетчик как украсть энергию

Назначение и устройство ИТТ

Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.

Как устроен измерительный трансформатор тока

Конструкция измерительного трансформатора тока

Обозначения:

  1. Первичная обмотка с определенным количеством витков (W1).
  2. Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
  3. Вторичная обмотка (W2 — число витков).

Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I1. К катушке 2 подключается приборы, позволяющие установить значение тока I2, релейная защита, система автоматики и т.д.

Основная область применения ТТ — учет расхода электроэнергии и организация систем защиты для различных электроустановок.

В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.

Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.

Перечень основных параметров

Технические характеристики трансформатора тока описываются следующими параметрами:

  • Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
  • Номинальным током первичной катушки (I1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
  • Током на вторичной катушке (I2), его значение может быть 1,0 А (для ИТТ с I1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I2 равным 2,0 А или 2,50 А.
  • Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: IНОМ1/IНОМ2, то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.

Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.

Технические характеристики измерительного трансформатора тока ТТ-В

Перечень основных параметров измерительного трансформатора тока ТТ-В

Виды конструкций измерительных трансформаторов

В зависимости от исполнения, данные устройства делятся на следующие виды:

Катушечный ИТТ

  1. Катушечные, пример такого ТТ представлен ниже. Катушечный ИТТ

Обозначения:

Пример установки встроенного ТТ

  • A – Клеммная колодка вторичной обмотки.
  • В – Защитный корпус.
  • С – Контакты первичной обмотки.
  • D – Обмотка (петлевая или восьмерочная) .
  1. Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:
  • Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4. Рисунок 4. Пример установки встроенного ТТ

Обозначения:

  • А – встроенный ТТ.
  • В – изолятор силового ввода трансформатора подстанции.
  • С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
  1. Шинными, это наиболее распространенная конструкция. Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ. Шинные ТТ производства Schneider ElectricШинные ТТ производства Schneider Electric
  1. Разъемными. Особенность данной конструкции заключается в том, что магнитопровод ТТ может разделяться на две части, которые стягиваются между собой специальными шпильками.Разъемный ТТ

Такой вариант конструкции существенно упрощает монтаж/демонтаж.

Расшифровка маркировки

Обозначение отечественных моделей интерпретируется следующим образом:

  • Первая литера в названии модели указывает на вид трансформатора, в нашем случае это будет буква «Т», указывая на принадлежность к ТТ.
  • Вторая литера указывает на особенность конструктивного исполнения, например, буква «Ш», говорит о том, что данное устройство шинное. Если указана литера «О», то это опорный ТТ.
  • Третьей литерой шифруется исполнение изоляции.
  • Цифрами указывается класс напряжения (в кВ).
  • Литера, для обозначения климатического исполнения согласно ГОСТ 15150 69
  • КТ, с указанием номинального тока первичной и вторичной обмотки.

Приведем пример расшифровки маркировки трансформатора тока.

Шильдик на ТТ с указанием его марки

Шильдик на ТТ с указанием его марки

Как видим, на рисунке изображена маркировка ТЛШ 10УЗ 5000/5А, это указывает на то, что перед нами трансформатор тока (первая литера Т) с литой изоляцией (Л) и шинной конструкцией (Ш). Данное устройство может использоваться в сети с напряжением до 10 кВ. Что касается исполнения, то литера «У», говорит о том, что аппарат создан для эксплуатации в умеренной климатической зоне. КТ 1000/5 А, указывает на величину номинального тока на первой и второй обмотке.

Схемы подключения

Обмотки трехфазных ТТ могут быть подключены «треугольником» или «звездой» (см. рис. 8). Первый вариант применяется в тех случаях, когда необходимо получить большую силу тока в цепи второй обмотки или требуется сдвинуть по фазе ток во вторичной катушке, относительно первичной. Второй способ подключения применяется, если необходимо отслеживать силу тока в каждой фазе.

Подключение трехобмоточного ТТ «звездой» и «треугольником»

Рисунок 8. Схема подключения трехобмоточного ТТ «звездой» и «треугольником»

При наличии изолированной нейтрали, может использоваться схема для измерения разности токов между двумя фазами (см. А на рис. 9) или подключение «неполной звездой» (B).

Пример как подключить ТТ на разность двух фаз (А) и неполной звездой (В)

Рисунок 9. Схема подключения ТТ на разность двух фаз (А) и неполной звездой (В)

Когда необходимо запитать защиту от КЗ на землю, применяется схема, позволяющая суммировать токи всех фаз (см. А на рис 10.). Если к выходу такой цепи подключить реле тока, то оно не будет реагировать на КЗ между фазами, но обязательно сработает, если происходит пробой на землю.

Подключения: А – для суммы токов всех фаз, В и С - последовательное и параллельное включение двухобмоточных ТТ

Рис 10. Подключения: А – для суммы токов всех фаз, В и С — последовательное и параллельное включение двухобмоточных ТТ

В завершении приведем еще два примера соединения вторичных обмоток ТТ для снятия показаний с одной фазы:

Вторичные катушки включаются последовательно (В на рис. 10), благодаря этому возникает возможность измерения суммарной мощности.

Вторичные обмотки соединяются параллельно, что дает возможность понизить КТ, поскольку происходит суммирование тока в этих катушках, в то время как в линии этот показатель остается без изменений.

Читайте так же:
Какие штрафы при самовольной замене электросчетчиков

Выбор

При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.

Помимо этого IНОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.

Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:

  • Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
  • Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
  • Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.

Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ ( п.1.5.1.). Пример расчета показан на картинке ниже.

Пример расчета ТТ

Пример расчета трансформатора тока

Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.

Обслуживание

Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:

ПУЭ 7. Правила устройства электроустановок. Издание 7

1.5.16. Класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5. Допускается использование трансформаторов напряжения класса точности 1,0 для включения расчетных счетчиков класса точности 2,0.

Для присоединения счетчиков технического учета допускается использование трансформаторов тока класса точности 1,0, а также встроенных трансформаторов тока класса точности ниже 1,0, если для получения класса точности 1,0 требуется установка дополнительных комплектов трансформаторов тока.

Трансформаторы напряжения, используемые для присоединения счетчиков технического учета, могут иметь класс точности ниже 1,0.

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40% номинального тока счетчика, а при минимальной рабочей нагрузке не менее 5%.

1.5.18. Присоединение токовых обмоток счетчиков к вторичным обмоткам трансформаторов тока следует проводить, как правило, отдельно от цепей защиты и совместно с электроизмерительными приборами.

Допускается производить совместное присоединение токовых цепей, если раздельное их присоединение требует установки дополнительных трансформаторов тока, а совместное присоединение не приводит к снижению класса точности и надежности цепей трансформаторов тока, служащих для учета, и обеспечивает необходимые характеристики устройств релейной защиты.

Использование промежуточных трансформаторов тока для включения расчетных счетчиков запрещается (исключение см. в 1.5.21).

1.5.19. Нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений.

Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5% при питании от трансформаторов напряжения класса точности 1,0. Для обеспечения этого требования допускается применение отдельных кабелей от трансформаторов напряжения до счетчиков.

Потери напряжения от трансформаторов напряжения до счетчиков технического учета должны составлять не более 1,5% номинального напряжения.

1.5.20. Для присоединения расчетных счетчиков на линиях электропередачи 110 кВ и выше допускается установка дополнительных трансформаторов тока (при отсутствии вторичных обмоток для присоединения счетчиков, для обеспечения работы счетчика в требуемом классе точности, по условиям нагрузки на вторичные обмотки и т. п.). См. также 1.5.18.

1.5.21. Для обходных выключателей 110 и 220 кВ со встроенными трансформаторами тока допускается снижение класса точности этих трансформаторов тока на одну ступень по отношению к указанному в 1.5.16.

Для обходного выключателя 110 кВ и шиносоединительного (междусекционного) выключателя 110 кВ, используемого в качестве обходного, с отдельно стоящими трансформаторами тока (имеющими не более трех вторичных обмоток) допускается включение токовых цепей счетчика совместно с цепями защиты при использовании промежуточных трансформаторов тока класса точности не более 0,5; при этом допускается снижение класса точности трансформаторов тока на одну ступень.

Такое же включение счетчиков и снижение класса точности трансформаторов тока допускается для шиносоединительного (междусекционного) выключателя на напряжение 220 кВ, используемого в качестве обходного, с отдельно стоящими трансформаторами тока и на напряжение 110-220 кВ со встроенными трансформаторами тока.

1.5.22. Для питания цепей счетчиков могут применяться как однофазные, так и трехфазные трансформаторы напряжения, в том числе четерех- и пятистержневые, применяемые для контроля изоляции.

1.5.23. Цепи учета следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки.

Зажимы должны обеспечивать закорачивание вторичных цепей трансформаторов тока, отключение токовых цепей счетчика и цепей напряжения в каждой фазе счетчиков при их замене или проверке, а также включение образцового счетчика без отсоединения проводов и кабелей.

Конструкция сборок и коробок зажимов расчетных счетчиков должна обеспечивать возможность их пломбирования.

1.5.24. Трансформаторы напряжения, используемые только для учета и защищенные на стороне высшего напряжения предохранителями, должны иметь контроль целости предохранителей.

1.5.25. При нескольких системах шин и присоединении каждого трансформатора напряжения только к своей системе шин должно быть предусмотрено устройство для переключения цепей счетчиков каждого присоединения на трансформаторы напряжения соответствующих систем шин.

1.5.26. На подстанциях потребителей конструкция решеток и дверей камер, в которых установлены предохранители на стороне высшего напряжения трансформаторов напряжения, используемых для расчетного учета, должна обеспечивать возможность их пломбирования.

Рукоятки приводов разъединителей трансформаторов напряжения, используемых для расчетного учета, должны иметь приспособления для их пломбирования.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector