Buderus-trade.ru

Теплотехника Будерус
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита от перегрева транзисторов — силовых ключей в импульсном источнике питания / преобразователе напряжения. Схема, конструкция

Защита от перегрева транзисторов — силовых ключей в импульсном источнике питания / преобразователе напряжения. Схема, конструкция

Нередко встает вопрос, как реализовать отключение преобразователя напряжения в случае критического нагрева. При этом хотелось бы реализовать максимально простую схему с минимальным количеством деталей. Такая схема приведена на рисунке.

Это фрагмент схемы показывающий, какие изменения нужно внести в цепи защиты по току, чтобы дополнительно получить защиту от перегрева.

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

В схеме используется контроллер D1 — микросхема 1156ЕУ2. У этой микросхемы ножка 9 отвечает за защиту по току. Если напряжение на этой ножке превышает 1 В, то контроллер отключает силовые ключи. На диодах VD40, VD41 реализована схема считывания большего напряжения из двух — напряжения на термодатчике VD42 и напряжения на выходе токового трансформатора, которое пропорционально току нагрузки. VD42 — термодатчик LM335. Этот датчик наклеивается на теплоотвод силовых элементов. Напряжение на LM335 возрастает по мере роста температуры. Как только напряжение на нем становится таким, что на движке подстроечного резистора R42 напряжение превышает 1 В, схема выключается.

Диоды VD40, VD41 — маломощные диоды Шоттки, рассчитанные от 3 В. Применение диодов Шоттки необходимо для того, чтобы минимизировать влияние падения напряжения на этих диодах на параметры срабатывания защиты.

Резистор R40 — 30 кОм.

Резистор R41 — 7.5 кОм.

Резистор R42 — подстроечный, 5 кОм. Этим резистором устанавливается температура срабатывания защиты.

Приведенное решение подходит для всех схем, собранных в сборнике ‘Конструирование источников питания и преобразователей напряжения’. Номиналы всех остальных элементов нужно брать из этих схем.

1 2

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Инвертор, преобразователь, чистая синусоида, синус.
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за.

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму.
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи.

Как не спутать плюс и минус? Защита от переполярности. Описание.
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст.

Преобразователь однофазного напряжения в трехфазное. Принцип действия.
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех.

Тепловые реле Schneider Electric серии LRD

Тепловые реле Schneider Electric серии LRD

Тепловые реле серии LRD предназначены для защиты цепей переменного тока и электродвигателей от перегрузки, исчезновения фазы, затянутого времени пуска и заклинивания ротора. Применяются с контакторами типов LC1.

LRD 01–35 присоединяются с помощью винтовых зажимов. Также возможно крепление с помощью кабелей с наконечником.

LRD 313 – 365313–365 крепятся с помощью винтовых зажимов BTR (с 6-гранным гнездом). Затягивание осуществляется изолированным торцовым ключом №4.

Новая запатентованная технология соединения EverLinkВ® обеспечивает постоянное качество зажима кабелей. Даже в случае текучести (1) проводников сила сжатия кабелей остается неизменной благодаря действию пружины силового соединителя.

Также поставляются реле для присоединения с помощью кабелей с наконечником. Этот способ соединения отвечает требованиям, предъявляемым на некоторых азиатских рынках, и подходит для применения в условиях сильной вибрации (например на железнодорожном транспорте).

(1) Текучесть — явление естественной деформации медных проводников, которое усиливается с течением времени.

1 — Диск регулировки уставок Ir, рабочего тока;

2 — Кнопка «Тест». Нажатие кнопки «Тест» обеспечивает:

  • контроль кабельных соединений цепи управления;
  • имитацию срабатывания реле (воздействие на 2 контакта — НО и НЗ, смотрите рисунок 2);

3 — Кнопка «Стоп». Изменяет состояние НО контакта, не изменяет состояние НЗ контакта.

Читайте так же:
Лабораторная работа 35 наблюдение теплового действия тока

4 — Кнопка «Возврат».

5 — Индикатор срабатывания реле.

6 — Крышка, защищающая диск регулировки уставок.

7 — Выбор режимов ручного или автоматического повторного возврата.

Тепловое реле состоит из нагревательного элемента, по которому протекает контролируемый ток и термобиметаллических пластин, реагирующих изгибом на повышение температуры нагревательного элемента и воздействующих на отключающий контактный механизм.

Основной характеристикой такого изделия является зависимость времени срабатывания от тока нагрузки (времятоковая характеристика). В соответствии с МЭК 60947-4-1, время срабатывания при протекании через тепловое реле тока кратностью 7,2 от величины тока уставки реле Ir, составляет: для класса 10 А — от 2 до 10 секунд, а для класса 20 — от 6 до 20 секунд.

  1. Симметричная нагрузка, 3 фазы, из холодного состояния
  2. Симметричная нагрузка, 2 фазы, из холодного состояния
  3. Симметричная нагрузка, 3 фазы, при длительном протекании установленного тока (из горячего состояния).

Тепловые реле не предназначены для защиты цепей переменного тока и электродвигателей от токов короткого замыкания. Наоборот, они сами нуждаются в защите предохранителями типов aM, gG, BS88.

Модель теплового реле следует выбирать так, чтобы номинальный ток нагрузки, протекающий через него, находился ближе к середине диапазона уставок. Это необходимо для того, чтобы была возможность регулировки в зависимости от температуры окружающего воздуха.

Термисторная защита электродвигателей и реле термисторной защиты двигателя

реле термисторной защиты сименс

Сложность конструкции тепловых реле к пускателям электродвигателей, недостаточная надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру обмоток электродвигателя. При этом датчики температуры устанавливаются на обмотке двигателя. Другими словами, осуществляется непосредственный контроль измерения нагрева двигателя. Прямая защита двигателя через контроль температуры обмотки даже при тяжелейших условиях окружающей среды обеспечивает полную защиту двигателя, оснащенного температурными датчиками с положительным коэффициентом сопротивления (PTC). Температурные датчики PTC встроены в обмотки электродвигателя (укладываются в обмотку двигателя изготовителем двигателей).

Термочувствительные защитные устройства: термисторы, позисторы

Зависимость сопротивления позисторов и термисторов от температуры

В качестве датчиков температуры получили применение термисторы и позисторы (РТС – резисторы) — полупроводниковые резисторы, изменяющие свое сопротивление от температуры. Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК. При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры, термисторы, наклеенные на три фазы, включаются параллельно (рисунок 1).

Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания =105, 115, 130, 145 и 160 . Эта температура называется классификационной. Позистор резко меняет сопротивление при температура за время не более 12 с. При сопротивление трёх последовательно включенных позисторов должно быть не более 1650 Ом, при температуре их сопротивление должно быть не менее 4000 Ом.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

Рассмотрим схему позисторной защиты, показанную на рисунке 2.

схема позисторной защиты электродвигателя

К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое подает сигнал на обмотку пускателя электродвигателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открьт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

Читайте так же:
Чем вызвано тепловое действие тока

При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 — открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети, двигатель останавливается.

Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю

После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Достоинства и недостатки термисторной (позисторной) защиты

  • Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.
  • Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя принудительного охлаждения. Следующей областью применения термисторной защиты является температурный контроль в трансформаторах, жидкостях и подшипниках для их защиты от перегрева.
  • Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.
  • Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

Виды термисторных реле различных производителей:

Реле термисторной защиты двигателя TER-7 ELCO (Чехия)

схема подключения ter-7

  • контролирует температуру обмотки электродвигателя в температ. интервале, данном сопротивл. PTC термистора фиксированный настроенный уровень коммутации
  • в качестве считывающего элемента применяетсчя термистор PTC встроенный в обмотку электродвигателя его производителем, возможно использование внешнего PTC сенсора
  • функция ПАМЯТЬ — реле в случае ошибки блокируется до момента вмешательства персонала (наж. кнопки RESET)
    RESET ошибочного состояния:
    a) кнопкой на передней панели
    b) внешним контактом (на расстоянии по двум проводам)
  • функция контроля короткого замыкани или отключения сенсора , состояние нарушения сенсора указывает мигающий красный светодиодный индикатор
  • выходной контакт 2x переключ. 8 A / 250 V AC1
  • состояние превышение температуры обмотки двигателя указывает светящийся красный светодиодный индикатор
  • универсальное напряжение питания AC/ DC 24 — 240 V
  • клеммы сенсора не изолированы гальванически, но их можно замкнуть с клеммой PE без поломки устройства, в случае питания от сети должен быть подключен нейтраль на клемму A2

Реле термисторной защиты электродвигателя РТ-М01-1-15 (МЕАНДР, Россия)

  • контролирует температуру двигателей, оснащенные позисторами (термисторы с положительным температурным коэффициентом — РТС резисторы), встроенные в обмотку двигателя ( производителем).
  • коммутируемый ток 5А/250В (пиковый 16А), контакты реле 1з+1р
  • индикация рабочих состояний:
  • (напряжение питания, срабатывание реле, перегрев двигателя, КЗ датчиков)
  • напряжение питания АС 220, 100, 380 (по исполнениям)

Реле контроля температуры двигателя E3TF01 230VAC (PTC), 1 CO, TELE Серия ENYA (Австрия)

  • контролируемая величина PTC (контр. температуры двигателя на повышение) от 6 PTC датчиков
  • диапазон измерения общее сопр. холодн. <1,5kΩ клеммы T1-T2 или T1-T3
  • напряжений питания 230V AC
  • максимальный коммутируемый ток 250V, 5A AC (1 перекидной)
Читайте так же:
Как найти количество теплоты выделяемое проводником с током

Реле контроля температуры двигателя G2TF02 (PTC), 2ПК (требуется модуль TR2) TELE Серия GAMMA (Австрия)

  • контролируемая величина PTC (контр. температуры двигателя на повышение) от 6 PTC датчиков
  • диапазон измерения общее сопр. холодн. <1,5kΩ клеммы T1-T2
  • диапазон напряжений питания спомощью модуля питания TR2 или SNT2 * (устанавливается в реле)
  • напряжений питания 230V AC
  • максимальный коммутируемый ток 250V, 5A AC (2 перекидных)

Реле термисторной защиты двигателя CR-810 F&F ЕвроАвтоматика (Белоруссия)

CR-810

  • контроль температуры электродвигателей, генераторов, трансформаторов и защита их от перегрева
  • датчики РТС устанавливаются в обмотках электродвигателя производителем и в комплект не входят (термисторы РТС соединенные последовательно от 1 до 6 штук)
  • напряжение питания 230V AC и 24V AC/DC
  • максимальный комутируемый ток 16А, 1 переключающий контакт
  • контроль КЗ в цепи термисторных датчиков
  • с ростом температуры электродвигателя растет сопротивление цепи термисторных датчиков, при достижении более 3000 Ом питание отключается (реле разрывает цепь питания катушки контактора), включение происходит автоматически при снижении температуры и соответсвенно сопротивления до 1800 Ом.

Реле контроля температуры двигателя MTR01, MTR02 BMR (Чехия)

MTR01

  • Реле контролирует температуру обмотки электрического двигателя. Принцип действия основан на измерении сопротивления термистора, встроенного в двигатель.
  • Устройство также контролирует короткое замыкание или пропадание фазы. Реле имеет один выходной перекидной контакт на ток 8 А.
  • Модификация MTR01 24V/ MTR02 24V предназначена для напряжения питания 24 В. Остальные параметры.
  • MTR02 с гальванической изоляцией
  • Сопротивление PTC в раб. режиме 50 Ω < PTC < 3,3 кΩ
  • Сопротивление PTC в авар. режиме PTC > 3,3кΩ или PTC < 50Ω
  • Отключение аварийного режима PTC < 1,8 кΩ + RESET
  • Номинальный ток 8 A (15А — пиковый ток), 1 перекидной контакт

Реле контроля температуры двигателя BTR-12E BTR Electronic Systems, «METZ CONNECT» (Германия)

BTR-12E

  • реле термистор применяется для защиты моторов от термических перегрузок, возникающих при механических перегрузках в приводах или при использовании электродвигателей под перенапряжением. Для регистрации температуры применяется РТС = сопротивление с позитивным температурным коэффициентом, которые позиционируются в месте наибольшего нагрева.
  • выпускается с памятью ошибки и без ЗУ (запоминающее устройство)
  • напряжение питания 230V AC / 24V AC/DC
  • предельно допустимый ток контактов 6А (1 или 2 переключающих контакта)

Реле термической защиты Grundfos MS 220 C Grundfos/Ziehl (Германия)

  • Реле Grundfos MS 220C предназначено для преобразования термисторного сигнала в релейный и передачи его на пускатель в насосах с мощностью двигателя более 3.0 кВт.
  • напряжение питания AC/DC 24 — 240V (и др. в зависимости от исполнения 110,400V)
  • 1 CO, ток контактов 6А

Реле контроля температуры двигателя серии 71.91 и 71.92 Finder (Италия)

Термисторное реле определения температуры для промышленного применения.

71.92.8.230.0401схема реле 71.91

Реле Finder термисторной защиты двигателя [71.91.8.230.0300]

  • 1 нормально разомкнутый контакт, без памяти отказов
  • Питание 24 В переменного/постоянного тока или 230 В переменного тока
  • Защита от перегрузок в соответствии с EN 60204-7-3
  • Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
  • Индикация состояния с помощью светодиода
  • Определение температуры с положительным температурным коэффициентом (PTC)
  • Выявление короткого замыкания с помощью PTC
  • Выявление обрыва провода с помощью PTC

71.92.8.230.0401схема реле 71.92

Реле Finder термисторной защиты двигателя (с памятью) [71.92.8.230.0401]

Применение реле для защиты электроустановок

При нарушениях нормального режима работы электроустановки для исключения выхода из строя электрооборудования и повышения надежности работы схемы в них используется электрическая защита, выполняемая с применением защитных реле.

К реле защиты предъявляются требования селективности, быстродействия, чувствительности и надёжности.

Селективность – это способность реле отключать только поврежденный участок.

Быстродействие позволяет резко снизить последствия аварии, сохранить устойчивость системы при аварийных режимах, обеспечить высокое качество электроэнергии.

Минимальное значение входного параметра, при котором срабатывает реле, называется чувствительностью.

Применяются следующие виды защит: максимально- и минимально-токовые, тепловая, температурная, от исчезновения напряжения, нулевая и ряд других защит.

Максимально-токовая защита обеспечивает защиту двигателей, преобразователей и элементов схем управления от коротких замыканий. Она осуществляется плавкими предохранителями, максимально-токовыми реле и автоматическими выключателями. При аварийных режимах максимально-токовая защита отключает потребитель от сети.

Читайте так же:
Розетка регулятор теплого пола

Выбор плавкой вставки при защите электродвигателей производится по току вставки , принимаемому по отношению к пусковому току двигателя . Для двигателей с короткозамкнутым ротором ток плавкой вставки определяется: при нормальном пуске с временем пуска менее 5 с ; при тяжелом пуске с временем более 5 с . Для двигателей с фазным ротором и двигателей постоянного тока, у которых пусковой ток не превышает, как правило, плавкая вставка выбирается из условия .

При защите электродвигателей максимально-токовыми реле их обмотки включаются в питающую сеть, а контакты – в цепь питания контактора или магнитного пускателя. Схемы включения максимально-токовых реле приведены на рис. 16.1

Рис. 16.1. Схемы включения максимально-токовых реле

Токи уставок реле и максимально-токовых расцепителей автоматических выключателей принимаются: для асинхронных двигателей с короткозамкнутым ротором , для АД с фазным ротором и двигателей постоянного тока , для схем управления .

Если несколько двигателей с фазным ротором питаются через общий ввод (рис. 16.1,б), то уставка реле КА1 и КА2 должна быть . Уставка реле КА0 составляет:

где — номинальный ток двигателя наибольшей мощности (режим ПВ=25%);

— сумма номинальных токов всех двигателей, защищаемых КА0.

Если двигатели включаются на длительный режим, то принимается . Коммутационная способность КА должна соответствовать номинальным значениям тока и напряжения катушек контакторов КМ, КМ1, КМ2, в цепи которых включены контакты реле. Ток отключения реле — тока катушки контактора.

Если токи цепи двигателей достаточно велики, то реле защиты включаются в силовую цепь с помощью трансформатора тока ТА (рис. 16.1, в).

Для того чтобы защитить двигатель при затянувшемся пуске или кратковременной пиковой перегрузке, КА воздействует на контактор через реле времени КТ (рис. 16.2), которое запускается с помощью реле КА4.

При нормальном пуске или кратковременной перегрузке, безопасной для двигателя, время пуска или перегрузки меньше времени выдержки реле времени , и контактор КМ в цепи двигателя М не отключается. После нормального пуска реле КА4 отпадает и снимает напряжение с реле КТ. Если время пуска или перегрузки больше времени выдержки реле КТ , то контакты КТ размыкаются, контактор КМ отключается и двигатель М обесточивается. Такая же схема может использоваться в схемах реверса двигателя.

Ток возврата реле должен быть больше номинального тока двигателя на 30%. Номинальные токи реле и двигателя должны удовлетворять условию .

Ток уставки реле КА4 выбирается по условию .

Рис. 16.2. Схема максимальной токовой защиты с реле времени

Защита двигателей от снижения напряжения предотвращает самозапуск двигателей после восстановления напряжения питания.

При коротком замыкании в сети напряжение на двигателях уменьшается, а ток в статоре возрастает. Если К3 длится 0,03-0,05 с, тo, как правило, линейные контакторы и магнитные пускатели не успевают отключить двигатель от сети, а частота его вращения не меняется.

При перерыве подачи напряжения более 0,5 с происходит отключение двигателей у неответственных потребителей, причем после восстановления напряжения их повторное включение произойти не должно.

Для защиты от понижения напряжения применяются электрoмагнитные реле напряжения. При понижении напряжениясети такое реле размыкает свой контакт в цепи катушки контактора КМ, который отключает двигатель от сети, и он останавливается. Для обеспечения самозапуска двигателя после исчезновения напряжения сети применяется схема, приведенная на рис. 16.3.

Запуск производится с помощью переключателя SA, который имеет два контакта: контакт 1 замыкается при переводе рукоятки в положение «Пуск» и остается замкнутым при её возврате в положение 0.

При повороте рукоятки в положение «Стоп» контакт 1 размыкается и остается разомкнутым при её переводе в положение 0. В положении «Пуск» рукоятки контакт 2 переключателя замыкается и подается напряжение на реле напряжения KV. Контактами КV подается питание на катушку контактора КМ, который включается и запускает двигатель. После включения контактора КМ замыкается его вспомогательный контакт КМ, который подает напряжение на реле KV после установки переключателя SA в нулевое положение и размыкания контакта 2. При исчезновении напряжения в сети цепь катушки контактора КМ в течение времени с остается замкнутой, т.к. реле КV удерживает свой контакт в замкнутом состоянии в течение выдержки времени 0,5 с. Если в течение 0,5 с напряжение в сети восстанавливается, то контактор КМ включается и происходит самозапуск двигателя. Если длительность перерыва более 0,5 с, то реле КV отключается и размыкает своим контактом цепь катушки контактора КМ. Самозапуск двигaтеля при восстановлении напряжения не происходит.

Читайте так же:
Схема автоматического выключателя с тепловым расцепителем

Рис. 16.3. Схема защиты двигателя при исчезновении напряжения сети

Для ответственных двигателей время самозапуска может быть установлено до 10 с.

При выборе реле следует проверить коммутационную способность контактов реле по току и напряжению катушки управляемого контактора.

Тепловая защита обеспечивает защиту двигателей от перегрузки. Она осуществляется электротепловыми, максимально-токовыми реле и автоматами с тепловыми расцепителями.

Сложность конструкции тепловых реле, недостаточно высокая надежность систем зaщиты на их основе привели к созданию теплoвой защиты, реагирующей непосредственно на температуру защищаемoгo объекта (температурная защита). При этом датчики температуры устанавливаются на обмoтке двигателя. В качестве датчиков температуры пoлучили применение термисторы и позисторы. Термистор – это резистор с большим отрицательным температурным коэффициентом сопротивления (ТКС). При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры термисторы, наклеенные на три фазы обмоток двигателя, включаются параллельно (рис. 16.4).

Рис. 16.4. Зависимость сопротивления позисторов и термисторов

а – последовательное соединение позисторов;

б – параллельное соединение термисторов

Позистор является нелинейным резистором с положительным ТКС. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз двигателя соединяются последовательно. Характеристика позисторов показана на рис. 16.4, а.

Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания 105, 115, 130, 145 и 160 . Эта температура называется классификационной.

На рис. 16.5 представлена схема позисторной защиты электродвигателя.

К контактам 1, 2 схемы (рис. 16.5, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рис. 16.5, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое воздействует на обмотку пускателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало.

Рис. 16.5. Аппарат позисторной защиты с ручным возвратом:

а – принципиальная схема; б – схема подключения к двигателю

Сопротивление между точками 1-2 схемы также мало, транзистор VT1 зaкрыт (на базе малый отрицательный потенциал), транзистор VТ2 открыт (на базе большой отрицательный потенциал). Отрицательный потенциал на коллекторе транзистора VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания. При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети.

После охлаждения двигателя его пуск возможен после нажатия кнопки «Возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Лекция № 17

Дата добавления: 2016-06-29 ; просмотров: 2487 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector