Buderus-trade.ru

Теплотехника Будерус
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

USB счетчик электроэнергии постоянного тока

USB счетчик электроэнергии постоянного тока

В данной статье представляется разработка USB-счетчика электроэнергии постоянного тока.

image

На основе представленной схемы вольтметра и прошивки микроконтроллера PIC18F2550 была создана USB-программа, которая могла бы считать электроэнергию, для цепи с постоянным сопротивлением. Так как счетчики постоянной энергии редкость и дорого (20-30 тыс. руб. в России и 6-10 тыс. руб. в Китае и Индии) то решили сами сделать счетчик, который подходил бы для наших лабораторных исследований, который в итоге составил цену не дороже 400 руб., по компонентам. Делали счетчик для замеров и сравнения энергии рекуперации в электродвигателях разной конструкции, но одинаковой мощности, также он может быть применим, как измеритель получаемой энергии от ветрогенератора, солнечных батареек и других источников энергии постоянного тока. Написанная программа может считать не только квт*ч, но и вт*ч, вт*с и т.д…

Собранная схема включала делитель напряжения, который одновременно был расчетным сопротивлением (выделено красным)

image

Которое вводилось в USB-программу (выделено красным):

image

Выделено голубым значение множителя напряжения, его перед замерами можно получить по формуле указанной здесь: bit.ly/1oNddey. Либо подобрать по мультиметру, то есть замеряя мультиметром напряжение батарейки, а потом вводить такое значение множителя напряжения, чтобы USB-программа (с помощью нашего счетчика) показывала на этой же батарейке такое же напряжение как на мультиметре.

Величина сопротивления делителя напряжения может быть подобрана как для пропускания больших, так и малых токов. Делитель напряжения еще необходим если мы подаем напряжение больше 5 вольт, больше 5 вольт на микроконтроллер подавать нельзя поэтому нужен делитель напряжения.

Стоит заметить, что схема в Proteus отличается от схемы, которая выполнена в железе. VCC (красненький проводок USB) будет идти не на 1 ногу, а на 20 ногу PICа. Также в схеме для Proteus не нарисованы 8 и 19 нога, в железе 8 или 19 (по выбору) нужно отвести на землю.

image
image

Счетчик, можно улучшить если изменить прошивку микроконтроллера, чтобы микроконтроллер замерял значение тока (с помощью датчика тока) в цепи и сам подавал их в USB-программу, при этом отпадет в ручную вводить значение сопротивление цепи.

image

Чтобы USB-программа работала нужно чтобы был установлен Framework 4.0 или его поздние версии. Если включаем USB-программу на Windows 7 или 8, то нужно её включать, как от Администратора.

USB-программа может обрабатывать неограниченное количество подключаемых счетчиков, для этого нужно выбрать открыть программу и еще раз выбрать по списку вниз HID-совместимое устройство (выделено черным). Устройства будут соответствовать по списку вниз, по порядку включения в компьютер.

Читайте так же:
Электросчетчик с профилем мощности

image

В USB-программе также можно поставить шумовой порог напряжения (выделено зеленым), который будет считать за 0 вольт все значения не превышающее выбранное для шумового порога в примере указано 0.05 В.

image
Замечено, что в Windows XP, иногда программа может не работать. Для этого нужно очистить журнал событий напротив DC energy meter, как его очистить, и где он находится написано здесь.

Алгоритм USB-программы для расчета энергии постоянного тока:

USB-программа получает измеренное напряжение от микроконтроллера, потом делит на вводимое сопротивление, получается ток. После, измеряемое напряжение умножается на вводимую величину умножителя напряжения, получается реальное напряжение, которое подается на счетчик до делителя. Это реальное напряжение перемножается с током и интегрируется по времени, получается значение энергии.

Измерение электрической мощности и энергии

Довольно часто возникает необходимость измерять мощность, потребляемую из сети, или же генерируемую в сеть. Это необходимо для учета потребляемой или генерируемой энергии, а также для обеспечения нормальной работы энергосистемы (избежание перегрузок). Измерять мощность можно несколькими способами – прямым и косвенным. При прямом измерении применяют ваттметр, а при косвенном амперметр и вольтметр.

Измерение мощности в цепи постоянного тока

Из-за отсутствия реактивной и активной составляющей в цепях постоянного тока для измерения мощности ваттметр применяют очень редко. Как правило, величину потребляемой или отдаваемой энергии измеряют косвенным методом, с помощью последовательно включенного амперметра измеряют ток I в цепи, а с помощью параллельно подключенного вольтметра измеряют напряжение U нагрузки. После чего применив простую формулу P=UI и получают значение мощности.

Чтоб уменьшить погрешность измерений из-за влияний внутренних сопротивлений устройств, приборы могут подключать по различным схемам, а именно при относительно малом сопротивлении нагрузки R применяют такую схему включения:

Измерение мощности косвенным методом в цепи постоянного тока при малом сопротивлении нагрузки

А при большом значении R такую схему:

Измерение мощности косвенным методом в цепи постоянного тока при большом сопротивлении нагрузки

Измерение мощности в однофазных цепях переменного тока

Главным отличием цепей переменного тока от сетей постоянного тока, пожалуй, заключается в том, что в переменном напряжении существует несколько мощностей – полная, активная и реактивная . Полную измеряют зачастую тем же косвенным методом с помощью амперметра и вольтметра и значение ее равно S=UI.

Замер же активной P=UIcosφ и реактивной Q=UIsinφ производится прямым методом, с помощью ваттметра. Для измерения ваттметр в цепь подключают по следующей схеме:

Читайте так же:
Правила замены счетчиков электрической энергии

Схема подключения однофазного ваттметра

Где токовую обмотку необходимо подключить последовательно с нагрузкой Rн, и, соответственно, обмотку напряжения параллельно нагрузке.

Замер реактивной мощности в однофазных сетях не производится. Такие опыты зачастую ставятся только в лабораториях, где ваттметры включают по специальным схемам.

Измерение мощности в трехфазных цепях переменного тока

Как и в однофазных сетях, так же и в трехфазных полную энергию сети можно измерять косвенным методом, то есть с помощью вольтметра и амперметра по схемам показанным выше. Если нагрузка трехфазной цепи будет симметричной, то можно применить такую формулу:

Полная мощность трехфазной сети

Uл – напряжение линейное, I- фазный ток.

Если же фазная нагрузка не симметрична, то производят суммирование мощностей каждой из фаз:

Полная мощность нессиметричной трехфазной сети

При измерении активной энергии в четырехпроводной цепи при использовании трех ваттметров, как показано ниже:

Схема подключения трехфазного ваттметра с нулевым проводом

Общей энергией потребляемой из сети будет сумма показаний ваттметров:

Активная мощность при измерении ваттметром

Не меньшее распространение получил и метод измерения двумя ваттметрами (применим только для трехпроводных цепей):

Схема подключения трехфазного ваттметра с без нулевого провода

Сумму их показаний можно выразить следующим выражением:

Сумма показаний ваттметров для трехпроводной цепи

При симметричной нагрузке применима такая же формула как и для полной энергии:

Активная мощность трехфазной цепи

Где φ – сдвиг между током и напряжением (угол фазового сдвига).

Измерение реактивной составляющей производят по той же схеме (смотри рисунок в)) и в этом случае она будет равна разности алгебраической между показателями приборов:

Измерение реактивной мощности ваттметром

Измерение реактивной мощности ваттметром будет равна

Если сеть не симметрична, то для измерения реактивной составляющей применяют два или три ваттметра, которые подключают по различным схемам.

Процесс измерения активной и реактивной мощности

Счетчиками индукционными или электронными производят измерения активной мощности цепи переменного напряжения. Они подключаются по тем же схемам что и ваттметры. Учет реактивной энергии в однофазных потребителей в нашей стране не ведется. Ее учет производят в трехфазных цепях крупных промышленных предприятий, потребляющих большие объемы электроэнергии. Счетчики активной энергии имеют маркировку СА, реактивной СР. Также широкое применение получают электронные счетчики электроэнергии.

177. Измерение активной электрической энергии

1. Постоянный ток. Для измерения расхода энергии при постоянном токе применяют счетчики трех систем: электродинамической, магнитоэлектрической и электролитической. Наибольшее распространение получили счетчики электродинамической системы (фиг. 369).

Неподвижные токовые катушки 1—1, состоящие из небольшого числа витков толстой проволоки, последовательно включены в сеть. Подвижная катушка шарообразной формы, называемая здесь якорем 2, укреплена на оси, могущей вращаться в подпятниках. Обмотка якоря выполнена из большого числа витков тонкой проволоки и разделена на несколько секций. Концы секций припаяны к пластинам коллектора 3, которого касаются металлические плоские щетки 4. Напряжение сети подается в обмотку якоря через добавочное сопротивление 7. При работе счетчика в результате взаимодействия тока в обмотке якоря и магнитного потока неподвижных токовых катушек создается момент вращения Мвр, под влиянием которого якорь начнег поворачиваться. Так как коллектор в определенные моменты времени будет включать к напряжению сети последующие секции обмотки якоря, то якорь будет сохранять постоянное направление врашения, откуда следует, что Но так как а то откуда видно, что вращающий момент счетчика пропорционален мощности, потребляемой в сети. На оси счетчика сидит алюминиевый диск 5, который вращается в поле постоянного магнита 6. В результате этого возникающие в диске вихревые токи взаимодействуют с полем магнита и создают тормозящий момент Мт, пропорциональный скорости диска:

Читайте так же:
Электронный электросчетчик два показания

При постоянной скорости вращения вращающий и тормозящий моменты счетчика равны между собой:

т. е. скорость вращения счетчика пропорциональна мощности сети. Рассматривая устройство электродинамического счетчика, мы могли заметить, что его работа напоминает работу двигателя постоянного тока с параллельным возбуждением. Назначение коллектора у счетчика то же, что и у двигателя постоянного тока.

О количестве электрической энергии, потребляемой в сети, можно судить по числу оборотов, сделанных якорем (диском). При помощи червячной или зубчатой передачи вращение оси передается счетному механизму, причем передача подбирается таким образом, чтобы счетный механизм отмечал расход энергии в гектоватт-часах или киловатт-часах.

Количество энергии, приходящееся на один оборот якоря, называется постоянной счетчика. Число оборотов якоря, приходящееся на единицу учтенной электрической энергии, называется передаточным числом. Для проверки счетчика на его таблице указывается постоянная счетчика или передаточное число.

Для компенсации трения в счетчике последовательно с обмоткой якоря включается дополнительная катушка 8 (фиг. 369), магнитное поле которой, взаимодействуя с током в обмотке якоря, создает дополнительный момент вращения, компенсирующий влияние трения.

2. Однофазный переменный ток. Для измерения активной энергии в цепях однофазного переменного тока применяют счетчики индукционной системы. Устройство индукционного счетчика почти такое же, как н индукционного ваттметра. Разница состоит в том, что счетчик не имеет пружин, создающих противодействующий момент, отчего диск счетчика может свободно вращаться. Стрелка н шкала ваттметра заменены в счетчике, счетным механизмом. Постоянный магнит, служащий в ваттметре для успокоения, в счетчике создает тормозящий момент.

Внешний вид однофазного индукционного счетчика показан на фиг. 370, а схема включения его в сеть дана на фиг. 371.

3. Трехфазный переменный ток. Активную энергию трехфазного переменного тока можно измерить с помощью двух однофазных счетчиков, включенных в сеть по схеме, аналогичной схеме двух ваттметров. Удобнее измерить энергию трехфазным счетчиком активной энергии, объединяющим в одном приборе работу двух однофазных счетчиков. Схема включения двухэлементного трехфазного счетчика активной энергии та же, что и схема соответствующего ваттметра.

Читайте так же:
Плачу за общедомовые счетчики электроэнергии

В четырехпроводной сети трехфазного тока для измерения активной энергии применяют схему, аналогичную схеме трех ваттметров, или употребляют трехэлементный трехфазный счетчик. Подсчет энергии по показаниям счетчиков, включенных по приведенным выше схемам, производится так же, как и подсчет мощности по тем же схемам.

В сетях высокого напряжения включение счетчиков производится при помощи измерительных трансформаторов напряжения и тока.

5 Апрель, 2009 13128 Печать

Формула мощности

При проектировании электрооборудования и расчёте кабелей и пусковой и защитной аппаратуры важно правильно рассчитать мощность и ток электроаппаратуры. В этой статье рассказывается о том, как найти эти параметры.

Формулы расчёта электрической мощности

Формулы расчёта электрической мощности

Что такое мощность

При работе электронагревателя или электродвигателя они выделяют тепло или выполняют механическую работу, единица измерения которой – 1 джоуль (Дж).

Одна из основных характеристик электрооборудования – мощность, показывающая количество тепла или произведённой работы за 1 секунду и выражающаяся в ваттах (Вт):

В электротехнике 1Вт выделяется при прохождении тока в 1А при напряжении 1В:

Согласно закону Ома, найти мощность можно также, зная сопротивление нагрузки и ток или напряжение:

  • P (Вт) – мощность электроприбора;
  • I (А) – ток, протекающий через устройство;
  • R (Ом) – сопротивление аппарата;
  • U (В) – напряжение.

Номинальной называют мощность при номинальных параметрах сети и номинальной нагрузке на валу электродвигателя.

Для того чтобы узнать количество электричества, потреблённого за весь период работы, её необходимо умножить на время, которое аппарат работал. Поучившаяся величина измеряется в кВт*ч.

Расчёт в сетях переменного и постоянного напряжения

Электросеть, питающая электроприборы, может быть трёх видов:

  • постоянное напряжение;
  • переменное однофазное;
  • переменное трёхфазное.

Для каждого вида при расчётах используется своя формула мощности.

Расчёт в сети постоянного напряжения

Самые простые расчёты производятся в электросети постоянного тока. Мощность электроаппаратов, подключённых к ней, прямо пропорциональна току и напряжению и, чтобы найти её, используется формула:

Например, в электродвигателе с номинальным током 4,55А, подключённом к электросети 220В, мощность равна 1000 Ватт, или 1кВт.

Читайте так же:
Сколько электроэнергии потребляет сам счетчик электроэнергии

И, наоборот, при известных напряжении сети и мощности ток рассчитывается по формуле:

Однофазные нагрузки

В сети, в которой отсутствуют электродвигатели, а также в бытовой электросети можно пользоваться формулами для сети постоянного напряжения.

Интересно. В бытовой электросети 220В ток можно вычислить по упрощённой формуле: 1кВт=5А.

Мощность переменного тока вычисляется сложнее. Эти аппараты, кроме активной, потребляют реактивную энергию, и формула:

показывает полную потребляемую энергию устройства. Для того чтобы узнать активную составляющую, нужно учесть cosφ – параметр, показывающий долю активной энергии в полной:

Например, в электродвигателе с Ракт 1кВт и cosφ 0,7 полная энергия, потребляемая устройством, будет 1,43кВт, и ток – 6,5А.

Треугольник активной, реактивной и полной энергии

Треугольник активной, реактивной и полной энергии

Расчет в трехфазной сети

Трёхфазную электросеть можно представить как три однофазных сети. Однако в однофазных сетях используется понятие «фазное напряжение» (Uф), измеряемое между нулевым и фазным проводами, в сети 0,4кВ, равное 220В. В трёхфазных электросетях вместо «фазного» применяется понятие «линейное напряжение» (Uлин), измеряемое между линейными проводами и в сети 0,4кВ, равное 380В:

Поэтому формула для активной нагрузки, например, электрокотла, выглядит так:

При определении мощности электродвигателя необходимо учитывать cosφ, выражение приобретает следующий вид:

На практике этот параметр обычно известен, а узнать необходимо ток. Для этого используется следующее выражение:

Например, для электродвигателя 3кВт (3000Вт) и cosφ 0,7 расчёт получается таким:

Интересно. Вместо вычислений можно считать, что в трёхфазной сети 380В 1кВт соответствует 2А.

Лошадиная сила

В некоторых случаях при определении мощности автомобилей пользуются устаревшей единицей измерения «лошадиная сила».

Эту единицу ввел в обращение Джеймс Уайт, в честь которого названа единица мощности 1 Ватт, в 1789 году. Его нанял один пивовар для постройки парового двигателя для насоса, способного заменить лошадь. Чтобы определить, какой необходим двигатель, взяли лошадь и запрягли её качать воду.

Считается, что пивовар взял самую сильную лошадь и заставил её работать без отдыха. Реальная сила лошади меньше в 1,5 раза.

В разных странах соотношение 1ЛС и 1кВт немного отличается друг от друга. В России принято считать 1ЛС=0.735кВт, и автомобильный двигатель в 80ЛС соответствует электродвигателю 58,8кВт.

Лошадиная сила

Знание того, как определить мощность и как узнать ток электроприборов, необходимы для проектирования электросетей, расчета кабелей и пускорегулирующей аппаратуры.

Видео

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector