Buderus-trade.ru

Теплотехника Будерус
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Большая Энциклопедия Нефти и Газа

Большая Энциклопедия Нефти и Газа

Преобразование электрической энергии в тепловую имеет большое практическое значение и широко используется в различных нагревательных приборах как в промышленности, так и в быту. Однако часто тепловые потери являются нежелательными, так как они вызывают непроизводительные расходы энергии, например в электрических машинах, трансформаторах и других устройствах, что снижает их КПД.  [16]

Преобразование электрической энергии в механическую с помощью электродвигателей позволяет наиболее удобно, технически совершенно и экономически эффективно приводить в движение разнообразные рабочие машины и механизмы в промышленности, сельском хозяйстве. На транспорте с помощью электродвигателей приводятся в движение поезда, морские и речные суда.  [17]

Преобразование электрической энергии в тепловую имеет большое практическое значение для устройства ламп накаливания, нагревательных приборов и печей. Однако выделение тепла в проводах и обмотках электрических машин может привести к недопустимо высокому повышению температуры и к порче изоляции проводов.  [18]

Преобразование электрической энергии в тепловую происходит со скоростью 100 Дж / с при токе 2 А.  [19]

Преобразование электрической энергии в тепловую имеет большое практическое значение для создания ламп накаливания, нагревательных приборов и печей. Однако выделение тепла в проводах и обмотках электрических машин, трансформаторов, измерительных и других приборов — не только бесполезная трата электрической энергии, но и процесс, который может привести к недопустимо высокому повышению температуры и к порче изоляции проводов и даже самих устройств.  [20]

Преобразование электрической энергии в магнитную происходит в процессе изменения тока в обмотке электромагнита.  [21]

Преобразование электрической энергии в световую впервые в мире осуществлено в 1802 г. выдающимся русским физиком и электротехником академиком Василием Владимировичем Петровым. Экспериментируя с источником электрического тока — вольтовым столбом, В. В. Петров обнаружил, что между двумя угольными электродами при пропускании через них электрического тока возникает яркое свечение. Уже тогда, на заре возникновения новой отрасли технических знаний — электротехники, Петров понимал огромное практическое значение открытого им явления.  [22]

Преобразование электрической энергии в другие виды энергии, например в тепловую, механическую или химическую, всегда связано с использованием электрического тока.  [23]

Преобразование электрической энергии в механическую с noMoaibio двигателей и механической в электрическую с помощью генераторов сопровождается потерями энергии, чему соответствуют определенные потери мощности. От значений потерь мощности зависит важнейший энергетический показатель машин постоянного TOI a — их КПД. Потери мощности в машинах приводят к их нагреванию.  [24]

Электромашинное преобразование электрической энергии имеет существенные недостатки: во-первых, двигатель-генераторы имеют значительную массу и габариты; во-вторых, КПД таких установок, определяемый произведением КПД двигателя и генератора, низкий; в-третьих, вращающиеся преобразователи при работе создают акустический шум.  [25]

Наиболее интенсивное преобразование электрической энергии в тепловую происходит при возникновении электрической дуги. Как известно из физики, при разведении первоначально соприкасающихся металлических или угольных электродов, подключенных к источнику напряжения, между ними возникает электрический разряд, называемый электрической дугой. Сила тока в дуге может достигать огромных значений ( тысячи и десятки тысяч ампер) при напряжении в несколько десятков вольт. При возникновении электрической дуги происходит термоэлектронная эмиссия с раскаленной поверхности катода и термическая ионизация молекул, обусловленная высокой температурой газа. Практически все межэлектродное пространство заполнено высокотемпературной плазмой, служащей проводником, по которому быстро перемещаются электроны от катода к аноду. Температура плазмы может достигать 10000 К.  [26]

Для преобразования электрической энергии в механическую служат электромагниты и электродвигатели. В данной главе будут рассмотрены только электромагнитные исполнительные устройства. Электродвигатели являются электрическими машинами и изучаются в соответствующем курсе.  [27]

Для преобразования электрической энергии в механическую в различных силовых установках применяют главным образом, асинхронные электродвигатели.  [29]

Для преобразования электрической энергии одного вида в другой наряду со статическими устройствами ( трансформаторы, ионные и электронные преобразователи, различные выпрямители) применяются электрические машины.  [30]

Преобразование электрической энергии в тепловую

ads

При прохождении электрического тока происходит неизбежное столкновение движущих заряженных частиц с ионами и молекулами вещества. При этом часть кинетической энергии передаётся последним, вследствие чего происходит нагрев проводника. Простыми словами, происходит преобразование электрической энергии в тепловую.

Читайте так же:
Автоматический выключатель с тепловой защитой что это

Закон Джоуля — Ленца

Мощность характеризует скорость преобразования электрической энергии в тепловую: P = U*I, учитывая, что U = r*I, получим формулу:

Скорость нагрева провода

Формула количества электрической энергии W, преобразованной в тепловую за единицу времени t:

W — Pt = rI 2 t

В системе СИ единицей количества тепла, так же, как и единицей энергии, является джоуль. Следовательно, выделенное током I в сопротивлении r тепло определяется формулой.

Q = rI 2 t

Данная зависимость называется законом Джоуля-Ленца: количество тепла, выделяемое постоянным током в проводнике, пропорционально квадрату тока, сопротивлению проводника и времени прохождения тока.

Количество тепловой энергии часто измеряют внесистемной единицей — калорией, 1 кал = 4,187 Дж или 1 Дж = 0,24 кал. Следовательно, количество тепла, выраженное в калориях, выражается по формуле:

Преобразование электрической энергии в тепловую применяется в нагревательных приборах.

Допустимая нагрузка проводов.

Приращение температуры провода при нагреве зависит от: массы, материала провода и количества выделившегося в нём тепла.

Скорость отдачи тепла пропорциональна разности температур провода и окружающей среды. С начала нагрева током, всё тепло идёт на провод, так как температура среды равна температуре провода, следовательно тепло в окружающую среду почти не отдаётся.

Температура провода быстро растёт, увеличивая тем самым разность температур между проводом и средой. Следовательно, увеличивается отдача тепла проводом в окружающую среду, и рост температуры провода замедляется. Наконец при некоторой температуре устанавливается тепловое равновесие. Температура провода достигает установившегося значения.

Время нагревания проводаэто временной промежуток, на протяжении которого провод нагреется до определенной температуры, отличающейся от установившейся температуры не более чем на 1%.

В среднем, нагрев провода может допускаться до температуры в пределах 65-80 °С. У изолированных проводов допустимый нагрев обуславливается характеристиками изоляции. Ток, при котором провод достигает предельно допустимой температуры tдоп, называется наибольшим допустимым или номинальным током провода I = Iн.

В том случае, если ток превышает границы номинального значения, то подобная перегрузка может быть допустима только на короткий промежуток времени. Чем больше ток в проводе по сравнению с номинальным, тем кратковременной может быть перегрузка.

Защита от перегрузки.

Короткое замыканиеэто соединение проводов, участков электрической цепи или выводов с разными потенциалами. Ток короткого замыкания может достигнуть значений гораздо больших, чем допустимый ток, что приводит к тепловому или механическому разрушению определенных участков установки.

Предохранители

Рис. 1 — Предохранители

Плавкие предохранители, реле или автоматы способны предотвратить перегрузку в электрической цепи. В качестве основы плавкого предохранителя выступает специальная вставка из проволоки, выполненной из легкоплавкого материала, которая при токе перегрузки перегорает, разрывая тем самым электрическую цепь. Сечение проволоки выбирается с таким расчетом, чтобы она выдерживала номинальный ток установки и плавилась при появлении токов перегрузки.

Перегоревший предохранитель

Рис.2 Перегоревший предохранитель

Автоматический выключатель

В современных силовых цепях плавкие предохранители часто заменены автоматическими устройствами (автоматами), пригодные к многоразовому использованию.

ПРЕОБРАЗОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В ТЕПЛОВУЮ ЭНЕРГИЮ

Если электрическую цепь замкнуть,то в ней возникнет электрический ток. При этом расходуется энергия источника питания, и он совершает работу по перемещению заряда по всей замкнутой цепи.

Согласно закона Ома для участка цепи:

Величину, которая характеризует скорость совершения работы, называют мощностью.

Мощность, отдаваемая источником:

Мощность потерь энергии внутри источника:

Единица измерения мощности: [Вт*с] = [Дж]

На практике используют более крупную единицу: [кВт*ч] = 3600000 Вт*с

Когда в цепи с сопротивлением R существует ток, электроны, перемещаясь под действием поля, сталкиваются с ионами кристаллической решетки проводника. При этом кинетическая энергия электронов пере­дается ионам, что приводит к увеличению амплитуды колебательного движения ионов, и, следовательно, к нагреванию проводника. Количество теплоты, выделенной в проводнике:

Q = I*Rt.

Приведенная зависимость носит название закона Ленца — Джоуля: количество теплоты, выделяемой при прохождении тока в проводнике, пропорционально квадрату силы тока, сопротивлению проводни­ка и времени прохождения тока.

Преобразование электрической энергии в тепловую имеет большое практическое значение и широко используется в различных нагревательных приборах, как в промышленности, так и в быту. Однако часто тепловые потери являются нежелательными, так как они вызывают непроизводительные расходы энергии, например, в электрических машинах, трансформаторах и других устройствах, что снижает их КПД.

Читайте так же:
Джоулево тепло выделяется при протекании электрического тока

Преобразование электрической энергии в тепловую. Электрическая мощность. При прохождении электрического I по участку цепи с сопротивлением r происходит преобразование в.

Количество электрической энергии W, преобразуемой в тепловую энергию за время t, определяется по закону Джоуля — Ленца:

Общие свойства измерительных цепей и приборов В агропромышленном производстве необходима информация о нескольких сотнях параметров. При этом значительное число параметров измеряют и контролируют при помощи электрических средств. Это обусловлено рядом особенностей электрических средств – малой инерционностью приборов, возможностью измерения на расстоянии и простотой автоматизации измерений и обработки результатов.

Мощность Р представляет собой количество энергии, преобразуемой в единицу времени:

Заменив в выражении (1.7а) произведение Ir напряжением U, получим формулу для мощности Р, характеризующей интенсивность процесса преобразования электрической энергии тепло или другие виды энергии:

Основными единицами измерений являются: для мощности — ватт (вт), а электрической энергии—ватт-секунда (вт-сек) или джоуль (дж). На практике чаще применяют укрупненные единицы измерении:

1 киловатт (кВт) = 1000 Вт,

1 киловатт-час (кВт>×ч) = 3,6×106.Ватт-сек (Дж).

Рассмотрим баланс мощностей в простейшей цепи (см. рис. 1.3). Для этого умножим все члены уравнения (1 .3а) на I.

EI = I2rг + I2rл I2rн (1.9)

Произведение EI представляет собой полную электрическую мощность Рэ, развиваемую источником. Часть этой мощности >DРr = I2 r теряется в самом источнике в виде тепла. Разность Рэ — DРг представляет собой мощность, отдаваемую источником во внешнюю цепь. В проводах линии также теряется в виде тепла часть мощности DРл = I2 rл Остальная мощность Pнагр = I2rн = Uнагр I потребляется нагрузкой. Баланс мощностей рассмотренной цепи можно наглядно иллюстрировать энергетической диаграммой (рис. 1.5).

Рис. 1.5. Энергетическая

диаграмма простейшей цепи

Потери мощности в источниках питания современных электроэнергетических установок относительно невелики. Мощные электрические генераторы имеют высокий к.п.д., достигающий значения 0,95 и выше.

При передаче потребителям одной и той же мощности Рнагр = Uнагр I ток, протекающий по линии, будет тем меньше, чем выше напряжение установки. Потеря в как известно, пропорциональна квадрату тока. В связи с этим повышение напряжения, например 10 раз, приводит к снижению потери линии передачи 100 следовательно, повышению ее экономичности. Этим объясняется использование все более высоких напряжений электроэнергетических установках.

Источниками электрической энергии служат устройства, в которых происходит преобразование различных видов энергии в электрическую. По виду преобра­зуемой энергии источники электрической энергии могут быть разделены на химические и физические. Химическими источниками электрической энергии принято называть устройства, вырабатывающие энергию за счет окислительно-восстановительного процесса между химическими реагентами. К химическим источникам относятся первичные (гальванические элементы и батареи), вторичные (аккумуляторы и аккумуляторные батареи) и резервные (при хранении элек­тролит никогда гальванически не связан с электродами), а также электрохимические генераторы (топливные элементы).

Светодиод — полупроводниковый прибор для преобразования электрической энергии в световую

Также известны другие понятия слова светодиод:

• светодиод — Полупроводниковый прибор, преобразующий эл. энергию в световую.
• Светодиод — или светоизлучающий диод — полупроводниковый прибор с электронно-дырочным переходом или контактом металл-полупроводник, создающий оптическое излучение при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его спектральные характеристики зависят в том числе от химического состава использованных в нём полупроводников

Химическая энергия

Первым в "истории человечества искусственно вызванным химическим процессом было, пожалуй, горение — разложение при помощи окисления растительной массы, имеющей сложный химический состав, на вещества более простые такие, как вода, углекислый газ и др. Огонь помог человеку использовать и другие химические процессы: именно благодаря огню человек смог сделать свои продукты питания мягче, вкуснее и удобоваримее.

Со временем люди научились использовать не только огонь, но и другие химические процессы. Однако только к концу XVIII века люди овладели законами природы настолько, что научились искусственно вызывать химические процессы и проводить их целенаправленно. Но теперь уже в большинстве случаев целью этих процессов было не разложение вещества, т.е. получение более простых по своему составу соединений, а наоборот, синтез веществ более сложного состава из простых "кирпичиков". Разумеется, химическое разложение сложных веществ ни в коей мере не потеряло своего значения: на нем основана, например, выплавка металлов из руды, при которой металлы высвобождаются из соединений. Продукция многих других отраслей промышленности есть результат разложения вещества сложного состава на более простые. Превращение одних химических веществ в другие сопровождается изменением химической энергии. Целесообразное и хорошо продуманное применение определенных видов энергии дает возможность в границах, установленных объективными законами природы, планомерно управлять химическими реакциями. На этой основе в последнее время стремительно развивается химическая промышленность, требующая все больших затрат энергии.

Читайте так же:
Тепловое действие электр тока используется

Световая энергия

Долгое время человек получал световую энергию исключительно при помощи сжигания (окисления) нагретых до каления твердых веществ. В факелах, масляных лампах, в свечах, керосиновых лампах газовых фонарях свет излучают либо возникающие в результате неполного сгорания раскаленные угольные частички, либо введенные в пламя другие твердые вещества. В современных лампах накаливания свет дает также раскаленное твердое вещество (вольфрамовая нить накаливания), но здесь свет излучается не благодаря освобождающейся в результате окислительного процесса химической энергии, а за счет превращения электрической энергии в световую.

Все же превращение электрической энергии в световую при посредстве тепла не экономично. Поэтому ныне прилагаются усилия к исключению тепла как посредника при этом превращении. В новейших осветительных приборах электрическая энергия превращается в световую без сколько-нибудь значительного выделения тепла, поэтому такие приборы отдают при одинаковом потреблении электрической энергии в три-четыре раза больше световой энергии, чем лампы накаливания.

Термоэлектрогенератор

Термоэлектрогенератор — это техническое устройство (электрический генератор), предназначенное для прямого преобразования тепловой энергии в электричество посредством использования в его конструкции термоэлементов (термоэлектрических материалов).

Содержание

История изобретения термоэлектрогенераторов [ править | править код ]

В 1821 году немецкий физик Томас Иоганн Зеебек обнаружил, что температурный градиент, образованный между двумя разнородными проводниками, может производить электричество. В 1822 году он опубликовал результаты своих опытов в статье «К вопросу о магнитной поляризации некоторых металлов и руд, возникающей в условиях разности температур», опубликованной в докладах Прусской академии наук. [1] В основе термоэлектрического эффекта Зеебека лежит тот факт, что температурный градиент в токопроводящем материале вызывает тепловой поток; это приводит к переносу носителей заряда. Поток носителей заряда между горячими и холодными областями, в свою очередь, создает разность потенциалов.

В 1834 году Жан-Шарль Пельтье обнаружил обратный эффект, при котором происходит выделение или поглощение тепла при прохождении электрического тока через контакт двух разнородных проводников. [2]

Типы применяемых термоэлектрогенераторов [ править | править код ]

  • Топливные: тепло от сжигания топлива (природный газ, нефть, уголь) и тепло от горения пиротехнических составов (шашек). : тепло от распада изотопов (распад не контролируется и работа определяется периодом полураспада).
  • Атомные: тепло атомного реактора (уран-233, уран-235, плутоний-238, торий), как правило, здесь термоэлектрогенератор — вторая и третья ступень преобразования.
  • Солнечные: тепло от солнечных коллекторов (зеркала, линзы, тепловые трубы).
  • Утилизационные: Тепло из любых источников, выделяющих сбросное тепло (выхлопные и печные газы, тепло керосиновых ламп и др). : основанные на естественном перепаде температур между окружающей средой и помещением (оборудованием, технологическим трубопроводом с теплой транспортируемой средой и т.д.) с применением первоначального пускового тока. В основе данного типа термоэлектрогенераторов — использование части полученной электрической энергии от эффекта Зеебека для преобразования в тепловую по закону Джоуля-Ленца.
  • Термосифонные: использование естественного тепла земли или воды, в случае отрицательных наружных температур. Тепловая энергия земли , посредством термосифона, установленного в скважину, доставляется к термоэлектрическому генератору, оборудованному радиатором с воздушным оребрением. За счет разницы температур генерируется электрическая энергия.

Полупроводниковые материалы для прямого преобразования энергии [ править | править код ]

Для термоэлектрогенераторов используются полупроводниковые термоэлектрические материалы, обеспечивающие наиболее высокий коэффициент преобразования тепла в электричество. Список веществ, имеющих термоэлектрические свойства, достаточно велик (тысячи сплавов и соединений), но лишь немногие из них могут использоваться для преобразования тепловой энергии. [3] Современная наука постоянно изыскивает новые и новые полупроводниковые композиции и прогресс в этой области обеспечивается не столько теорией, сколько практикой, ввиду сложности физических процессов, происходящих в термоэлектрических материалах. Определённо можно сказать, что на сегодняшний день не существует термоэлектрического материала, в полной мере удовлетворяющего промышленность своими свойствами, и главным инструментом в создании такого материала является эксперимент. Важнейшими свойствами полупроводникового материала для термоэлектрогенераторов являются:

  • КПД: Желателен как можно более высокий КПД;
  • Технологичность: Возможность любых видов обработки;
  • Стоимость: Желательно отсутствие в составе редких элементов или их меньшее количество, достаточная сырьевая база (для расширения сфер ассимиляции и доступности);
  • Коэффициент термо-ЭДС: Желателен как можно более высокий коэффициент термо-ЭДС (для упрощения конструкции);
  • Токсичность: Желательно отсутствие или малое содержание токсичных элементов (например: свинец, висмут, теллур, селен) или их инертное состояние (в составе сплавов);
  • Рабочие температуры: Желателен как можно более широкий температурный диапазон для использования высокопотенциального тепла и, следовательно, увеличения преобразуемой тепловой мощности.
Читайте так же:
Реле тепловое токов ртл 1016

Пути развития и повышения КПД [ править | править код ]

  • Эффективный термоэлектрический материал: КПД преобразования, термо-ЭДС, пластичность, тонкоплёночное исполнение.
  • Эффективный и совместимый с теплообменником жидкометаллическийтеплоноситель.
  • Расширение использования высококачественной керамики в конструкции ТЭГ.
  • Унификация узлов, приспособленных для разных случаев применения.
  • Предельное повышение энергоплотности ТЭГов до уровня автомобильных и авиационных двигателей и выше.
  • Примечание: Коэффициент Карно = 1 соответствует 100 %.

Из таблицы заметен существенный рост КПД, связанный прежде всего с тщательным совершенствованием технологий изготовления материалов, рациональным исполнением конструкций, развитием материаловедения в области термоэлектричества.

Области применения термоэлектрогенераторов [ править | править код ]

Радиоизотопные термоэлектрогенераторы применяются в качестве бортовых источников электропитания космических аппаратов, предназначенных для исследования удаленных от Солнца регионов Солнечной системы. В частности, такие генераторы, использующие тепло плутониевых тепловыделяющих элементов установлены на космических аппаратах «Кассини» и «Новые горизонты». В прошлом подобные устройства применялись и на Земле в навигационных маяках, радиомаяках, метеостанциях и подобном оборудовании, установленном в местности, где по техническим или экономическим причинам нет возможности воспользоваться другими источниками электропитания.

В последние годы термоэлектрические генераторы получили применение в автомобильной технике для рекуперации тепловой энергии, например для утилизации тепла элементов выхлопной системы.

Преобразование энергии в электрической цепи
Мгновенная, активная, реактивная и полная мощности синусоидального тока

Передача энергии w по электрической цепи (например, по линии электропередачи), рассеяние энергии, то есть переход электромагнитной энергии в тепловую, а также и другие виды преобразования энергии характеризуются интенсивностью, с которой протекает процесс, то есть тем, сколько энергии передается по линии в единицу времени, сколько энергии рассеивается в единицу времени. Интенсивность передачи или преобразования энергии называется мощностью р. Сказанному соответствует математическое определение:

Выражение для мгновенного значения мощности в электрических цепях имеет вид:

Приняв начальную фазу напряжения за нуль, а сдвиг фаз между напряжением и током за , получим:

Итак, мгновенная мощность имеет постоянную составляющую и гармоническую составляющую, угловая частота которой в 2 раза больше угловой частоты напряжения и тока.

Когда мгновенная мощность отрицательна, а это имеет место (см. рис. 1), когда u и i разных знаков, т.е. когда направления напряжения и тока в двухполюснике противоположны, энергия возвращается из двухполюсника источнику питания.

Такой возврат энергии источнику происходит за счет того, что энергия периодически запасается в магнитных и электрических полях соответственно индуктивных и емкостных элементов, входящих в состав двухполюсника. Энергия, отдаваемая источником двухполюснику в течение времени t равна .

Активная мощность

Среднее за период значение мгновенной мощности называется активной мощностью .

Принимая во внимание, что , из (3) получим:

Активная мощность, потребляемая пассивным двухполюсником, не может быть отрицательной (иначе двухполюсник будет генерировать энергию), поэтому , т.е. на входе пассивного двухполюсника . Случай Р=0, теоретически возможен для двухполюсника, не имеющего активных сопротивлений, а содержащего только идеальные индуктивные и емкостные элементы.

Резистор (идеальное активное сопротивление)

Здесь напряжение и ток (см. рис. 2) совпадают по фазе , поэтому мощность всегда положительна, т.е. резистор потребляет активную мощность

Катушка индуктивности (идеальная индуктивность)

При идеальной индуктивности ток отстает от напряжения по фазе на . Поэтому в соответствии с (3) можно записать .

Участок 1-2: энергия , запасаемая в магнитном поле катушки, нарастает.

Участок 2-3: энергия магнитного поля убывает, возвращаясь в источник.

Конденсатор (идеальная емкость)

Аналогичный характер имеют процессы и для идеальной емкости. Здесь . Поэтому из (3) вытекает, что . Таким образом, в катушке индуктивности и конденсаторе активная мощность не потребляется (Р=0), так как в них не происходит необратимого преобразования энергии в другие виды энергии. Здесь происходит только циркуляция энергии: электрическая энергия запасается в магнитном поле катушки или электрическом поле конденсатора на протяжении четверти периода, а на протяжении следующей четверти периода энергия вновь возвращается в сеть. В силу этого катушку индуктивности и конденсатор называют реактивными элементами, а их сопротивления ХL и ХС , в отличие от активного сопротивления R резистора, – реактивными.

Читайте так же:
Тепловое свойство тока в промышленности

Интенсивность обмена энергии принято характеризовать наибольшим значением скорости поступления энергии в магнитное поле катушки или электрическое поле конденсатора, которое называется реактивной мощностью.

В общем случае выражение для реактивной мощности имеет вид:

Она положительна при отстающем токе (индуктивная нагрузка- ) и отрицательна при опережающем токе (емкостная нагрузка- ). Единицу мощности в применении к измерению реактивной мощности называют вольт-ампер реактивный (ВАр).

В частности для катушки индуктивности имеем:

Из последнего видно, что реактивная мощность для идеальной катушки индуктивности пропорциональна частоте и максимальному запасу энергии в катушке. Аналогично можно получить для идеального конденсатора:

Полная мощность

Помимо понятий активной и реактивной мощностей в электротехнике широко используется понятие полной мощности:

Активная, реактивная и полная мощности связаны следующим соотношением:

Отношение активной мощности к полной называют коэффициентом мощности . Из приведенных выше соотношений видно, что коэффициент мощности равен косинусу угла сдвига между током и напряжением. Итак,

Комплексная мощность

Активную, реактивную и полную мощности можно определить, пользуясь комплексными изображениями напряжения и тока. Пусть , а . Тогда комплекс полной мощности:

где — комплекс, сопряженный с комплексом .

Комплексной мощности можно поставить в соответствие треугольник мощностей (см. рис. 4). Рис. 4 соответствует (активно-индуктивная нагрузка), для которого имеем:

Применение статических конденсаторов для повышения cosφ

Как уже указывалось, реактивная мощность циркулирует между источником и потребителем. Реактивный ток, не совершая полезной работы, приводит к дополнительным потерям в силовом оборудовании и, следовательно, к завышению его установленной мощности. В этой связи понятно стремление к увеличению в силовых электрических цепях.

Следует указать, что подавляющее большинство потребителей (электродвигатели, электрические печи, другие различные устройства и приборы) как нагрузка носит активно-индуктивный характер.

Если параллельно такой нагрузке (см. рис. 5), включить конденсатор С, то общий ток , как видно из векторной диаграммы (рис. 6), приближается по фазе к напряжению, т.е. увеличивается, а общая величина тока (а следовательно, потери) уменьшается при постоянстве активной мощности . На этом основано применение конденсаторов для повышения .

Какую емкость С нужно взять, чтобы повысить коэффициент мощности от значения до значения ?

Разложим на активную и реактивную составляющие. Ток через конденсатор компенсирует часть реактивной составляющей тока нагрузки :

;(10)
;(11)
.(12)

Из (11) и (12) с учетом (10) имеем

но , откуда необходимая для повышения емкость:

Баланс мощностей

Баланс мощностей является следствием закона сохранения энергии и может служить критерием правильности расчета электрической цепи.

а) Постоянный ток

Для любой цепи постоянного тока выполняется соотношение:

Это уравнение представляет собой математическую форму записи баланса мощностей: суммарная мощность, генерируемая источниками электрической энергии, равна суммарной мощности, потребляемой в цепи.

Следует указать, что в левой части (14) слагаемые имеют знак “+”, поскольку активная мощность рассеивается на резисторах. В правой части (14) сумма слагаемых больше нуля, но отдельные члены здесь могут иметь знак “-”, что говорит о том, что соответствующие источники работают в режиме потребителей энергии (например, заряд аккумулятора).

б) Переменный ток.

Из закона сохранения энергии следует, что сумма всех отдаваемых активных мощностей равна сумме всех потребляемых активных мощностей, т.е.

В ТОЭ доказывается (вследствие достаточной громоздкости вывода это доказательство опустим), что баланс соблюдается и для реактивных мощностей:

,(16)

где знак “+” относится к индуктивным элементам , “-” – к емкостным .

Умножив (16) на “j” и сложив полученный результат с (15), придем к аналитическому выражению баланса мощностей в цепях синусоидального тока (без учета взаимной индуктивности):

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector