Buderus-trade.ru

Теплотехника Будерус
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как проверить трансформатор тока электросчетчика

Замена трансформаторов тока

Необходимость замены трансформаторов тока возникает при проведении поверочных мероприятий, которые – в зависимости от типа прибора, мощности и нагрузки – проводятся один раз 4-8 лет. Учитывая, что поверочные работы с трансформатором тока очень сложны, оптимально приобретать новые – с самым свежим сроком поверки.

Компания «10 киловольт» производит замену трансформаторов тока, устанавливает электросчетчики, проводит монтажные и проектировочные работы. Для консультаций и вопросов просим обращаться по указанным выше телефонам.

Прайс-лист на установку (замену) и перепрограммирование электросчетчиков
Наименование работыЕд. изм.Цена (руб.)
1Замена (монтаж и демонтаж) электросчётчика однофазного (однотарифного, многотарифного)шт.2000
2Замена (монтаж и демонтаж) электросчётчика трехфазного (прямого включения или косвенного)шт.3500
3Установка, замена трансформаторов тока в цепях учета и защиты (до 1000 В)шт.3200
4Программирование тарифного расписания или переход на зимнее/летнее времяшт.1000
5Меркурий 200.02 (однофазный, многотарифный)шт.1800
6Меркурий 230 ART-01CN (прямого включения)шт.4700

Замена трансформаторов тока и электросчетчиков

Периодичность проверки прибора учета указывается в его инструкции по эксплуатации. При соблюдении нормативных процедур, при проверке трансформаторов тока выполняются следующие мероприятия:

  • Измерительные работы по регламентированным метрологическим параметрам;
  • Визуальный осмотр корпуса, контактных групп, узлов и деталей;
  • Измерение степени размагничивания;
  • Измерение сопротивления изоляции;
  • Контроль соответствия вводов и выводов клемм.

Установка трансформаторов тока с электросчетчиом Меркурий 230

Замена электросчетчика и трансформаторов тока на новые

Замена электросчетчика и трансформаторов тока на новые

Для каждого из тестов установлены свои нормативные показатели. Если какой-либо из показателей при поверке трансформатора тока выходит за пределы нормативных значений – все устройство признается негодным к эксплуатации. Это значит, что требуется замена трансформаторов тока на новые.

Сложность поверочных работ

Для проведения метрологических испытаний необходимо пользоваться услугами компаний, которые предусматривают в своем штате наличие квалифицированных метрологов и аккредитованные измерительные лаборатории. Данная необходимость серьезно усложняет процедуру поверки и делает ее дорогостоящей – оборудование стоит денег, а работникам необходимо платить зарплату.

Как правило, трансформаторы тока эксплуатируются при высокой интенсивности, кроме того – достаточно много установлено оборудования старого образца. В результате поверочных испытаний может возникнуть ситуации, что один их параметров не укладывается в норму. А это означает, что трансформатор тока подлежит замене.

Нетрудно подсчитать, что логичнее обойтись без процедуры поверки: замена трансформаторов тока на новые и стоимость работ по монтажу окажутся меньше, если проводить весь комплекс мероприятий.

Какой трансформатор тока покупать

Всегда выгоднее покупать трансформатор тока, срок поверочных работ которого будет больше. Трансформаторы со сроком 8 лет стоят дороже, но не настолько, чтобы на этом экономить.

Компания «10 киловольт» предлагает свои услуги: мы гарантируем, что работа по замене трансформатора тока будет выполнена качественно, аккуратно и грамотно.

Мы подберем тип устройства согласно параметрам вашей энергосети, осуществим покупку и доставку оборудования на объект, обеспечим квалифицированный монтаж и тестирование новых трансформаторов тока. Компания предоставляет клиенту все документы, которые требуются по законодательству.

Обязательно обратите внимание на дату окончания срока эксплуатации трансформатора тока и электросчетчика.

Выбор трансформаторов тока в цепях учёта

Проверить правильно ли выбраны трансформаторы тока при выполнении учета электроэнергии на силовом трансформаторе.

Мощность трансформатора, кВА

Мощность нагрузки изменяется от указанной до номинальной

Коэффициент трансформации тр-ра тока

Задача 1. Необходимо выполнить учет электроэнергии на силовом трансформаторе 250 кВА, 10/0,4 кВ . Мощность нагрузки трансформатора изменяется от 70 кВА до номинальной. Ячейка трансформатора оборудована трансформаторами тока с К 1 = 75/5 (коэффициент трансформации в виде отношения номинальных первичного и вторичного токов). Требуется проверить их пригодность (правильно ли выбраны ТТ).

Номинальный первичный ток трансформатора по стороне 10 кВ

Ток минимальной нагрузки

Вторичный ток при номинальной нагрузке

Согласно ПУЭ при максимальной нагрузке присоединения вторичный ток должен составлять не менее 40% от номинального тока счетчика. Номинальный вторичный ток равен 5А.

0,96А-х% 5/100=0,96/х 5*х=0,96*100 х=96/5 х=19,2

Отношение вторичного тока к номинальному в процентах составит:

(0,96/5)∙100%= 19,25<40% – условие не выполняется

Вторичный ток при минимальной нагрузке

Согласно ПУЭ при минимальной нагрузке присоединения вторичный ток должен составлять не менее 5%. от номинального тока счетчика. Номинальный вторичный ток равен 5А.

Отношение вторичного тока к номинальному в процентах составит:

(0,27/5))∙100%= 5,39>5% – условие выполняется, но можно лучше

Таким образом, трансформатор тока нужно заменить трансформатором тока 30/5.

Тогда вторичный ток при номинальной нагрузке

А отношение вторичного тока к номинальному в процентах составит:

(2,405/5)∙100%=48,1> 40% – условие выполняется

Вторичный ток при минимальной нагрузке

Отношение вторичного тока к номинальному в процентах составит:

(0,67/5))∙100%=0,135*100=13,5 >5% – условие выполняется

Вывод: Трансформатор тока представляет собой вспомогательный аппарат, в котором вторичный ток практически пропорционален первичному току и предназначенный для включения измерительных приборов и реле в электрические цепи переменного тока. Трансформаторы тока служат для преобразования тока любого значения и напряжения в ток, удобный для измерения стандартными приборами (5 А), питания токовых обмоток реле, отключающих устройств, а также для изолирования приборов и обслуживающего их персонала от высокого напряжения.

Обычно трансформатор тока выбирается с условием, чтобы его вторичный ток не превышал 110% номинального. С другой стороны, трансформаторы тока, выбранные с завышенными коэффициентами трансформации с учетом тока КЗ, при малых вторичных токах имеют повышенные погрешности. Согласно ПУЭ при максимальной нагрузке присоединения вторичный ток должен составлять не менее 40% от номинального тока счетчика, а при минимальной – не менее 5%.

Читайте так же:
С каким электросчетчиком воровать электроэнергию

Таким образом трансформатор тока был выбран неправильно. Так как номинальный ток вторичной обмотке указан в паспортной табличке и равен 5А, то обратимся к принятой для ТТ шкале номинальных первичных токов: 1,5,10,15,20,30,40,50,75 и т.д. Выбрав вторичный ток = 30А получаем трансформатор с коэффициентом трансформации К=30/5

2. Расчет нагрузки трансформатора тока

Определить нагрузку на трансформатор напряжения и падение напряжения в кабеле. Сравнить с допустимыми значениями.

Междуфазная нагрузка, ВА

Длина кабеля до трансформатора напряжения, м

Сечение кабеля, мм 2

Для трехфазного трансформатора напряжения определяется мощность нагрузки S ТН каждой из фаз по формуле

где — наибольшая и наименьшая мощности междуфазной нагрузки

Из трех вычисленных таким образом нагрузок берется наибольшая S ТНmax , и проверяется неравенство .

Наиболее загружена фаза с . Мощность ее нагрузки

Расчетная нагрузка трансформатора напряжения ,

т.е. не превышает допустимую.

Сопротивление соединительных проводов определяется по формуле

где ℓ – длина провода между трансформатором тока и счетчиком, м; γ – удельная проводимость; для меди γ = 53 м/(Ом·мм 2 ), для алюминия γ = 32 м/(Ом·мм 2 ); s- сечение провода, мм 2 .В токовых цепях сечение медных проводов должно быть не менее 2,5 мм 2 , алюминиевых – не менее 4 мм 2 .

Сопротивление алюминиевого провода

Определяется ток нагрузки I ТН фазы c:

Ток нагрузки в фазе с

Согласно ПУЭ сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков выбираются таким образом, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения. При номинальном напряжении 100 В потеря напряжения в вольтах численно совпадает с потерей напряжения в процентах.

Определяется падение линейного напряжения ΔU для трехфазного трансформатора напряжения:

Падение напряжения в соединительных проводах

<0,25% что допустимо.

Вывод: Измерительные трансформаторы напряжения – это промежуточные трансформаторы, через которые включаются измерительные приборы при высоких напряжениях. Благодаря этому измерительные приборы оказываются изолированными от сети, что делает возможным применение стандартных приборов (с переградуированием их шкалы) и тем самым расширяет пределы измеряемых напряжений. Нагрузка на трансформатор и падение напряжения в кабеле не превышают допустимые.

3. Расчет экономии электроэнергии, затрачиваемой на освещение

Производственный цех имеет верхнее освещение. Источник света – N=285 светильников, каждый из которых имеет одну лампу накаливания.

Мощность лампы накаливания .

Исследование освещения показало, что M=54 светильников с натриевыми лампами высокого давления мощностью обеспечат тот же уровень освещенности в цехе.

Срок службы ламп накаливания (ЛН) – 1000 часов.

Срок службы натриевых ламп высокого давления (НЛ) – 10000 часов.

Время работы светильников в год часов.

Расчет включает следующие этапы:

Расчет капитальных затрат.

Расходы на электроэнергию.

Расчет срока окупаемости.

Капитальные затраты (КЗ)

1. Количество светильников

2. Стоимость светильников, включая управления (за ед., у. е.)

3. Стоимость замены ламп (за ед., у. е.)

4. Стоимость установки светильников (за ед., у. е.)

54*(180+48+ 120)=54*348= 18792

КЗ=M (Расход по статье 2+расход по статье 3+расход по статье 4))

Расходы на электроэнергию

1. Количество светильников

2. Потребление электроэнергии каждой лампой, Вт

3. Часы работы, час/год(Тр)

Электроэнергия, потребляемая лампами накаливания за год, кВтч/год:

285*500Вт*3000 час/год=427500000Вт∙ч/год=427500 кВт∙ч/год

54*400Вт*3000=64800000 Вт∙ч/год=64800 кВт∙ч/год

4. Стоимость эл. энергии за 1 кВтч, у. е. (Т)

ИТОГО. Общие расходы на электроэнергию за год. где Т – тариф за 1 кВтч.

1. Количество светильников

2. Стоимость очистки светильников, у. е.

3. Количество раз чистки светильников в год

4. Общая стоимость чистки в год (статья расхода 1*статья расхода 2* статья расхода 3)

5. Стоимость замены ламп за ед.

6. Стоимость замены всех ламп за год ((статья 5 * / срок службы лампы) * количество светильников)

7. Эксплуатационные расходы за год (статья 6+статья 4).

8. Общие эксплуатационные расходы (ОЭР) определяются как сумма эксплуатационных расходов и расходов на электроэнергию

Расчет срока окупаемости.

Экономия за год, у. е.

Э=ОЭР ЛН – ОЭР НЛ= 32062,50 -4071,60=27990,90

Срок окупаемости, лет.

54*(180+48+ 120)=54*348= 18792

=46170/27990,90=1,65=165/100=(165*12)/(100*12)=1980/1200=19,8/12= 12 мес+7,8 мес= 1год8 мес – для ламп накаливания

= 18792/27990,90=0,67=67/100=(67*12)/(100*12)=804/1200=8,04/12= 8 мес – для светильников с натриевыми лампами высокого давления

Выводы: несмотря на более низкую стоимость ламп и светильников накаливания, стоимости их замены по сравнению с натриевыми лампами высокого давления и их светильников, ламп накаливания требуется почти в 5 раз больше, светильники под лампы накаливания необходимо чаще чистить и срок службы их в 10 раз меньше. Экономия от установки натриевых ламп составила 27990,90 у. е., а срок их окупаемости на 1 год меньше.

Заключение

В ходе данной работы я ознакомился с руководящими документами; научился производить расчеты и выбор трансформаторов тока; узнал назначение, принцип действия, область применения и методы расчета трансформаторов тока и напряжения. Научился производить расчет экономии электроэнергии в производстве. Экономия электроэнергии возможна при сведении к минимуму потерь электроэнергии. Технологические потери (расход) электроэнергии при ее передаче по электрическим сетям (далее – ТПЭ) – потери в линиях и оборудовании электрических сетей, обусловленные физическими процессами, происходящими при передаче электроэнергии в соответствии с техническими характеристиками и режимами работы линий и оборудования с учетом расхода электроэнергии на собственные нужды подстанций и потерь, вызванных погрешностью системы учета электроэнергии. Определяются расчетным путем.

Коммерческие потери электроэнергии (их определение в законодательной базе отсутствует) связаны с неоплатой потребителем электрической энергии, а также ее хищением. Необходимо учитывать погрешности измерительных комплексов, в которые входят трансформаторы тока и трансформаторы напряжения. Здесь важны их классы точности, реальные условия эксплуатации, недогрузка или перегрузка, правильность схем подключения.

Читайте так же:
Принцип работы электросчетчика нева 101 1so

Литература

Справочник по проектированию электрических сетей и оборудования / Под ред. Ю.Г. Барыбина – М.: Энергоатомиздат, 1991. – 464 с.

Головкин Г.И. Энергосистема и потребители ЭЭ. – М., Энергоатомиздат, 1984 г. – 360 с.

Справочная книга для проектирования электрического освещения / Под ред. Г.М. Кнорринга. – Л.: Энергия, 1976 – 384 с.

Как проверить трансформатор мультиметром: особенности прямого и косвенного методов проверки

Электрический трансформатор — довольно распространенное устройство, используемое в быту для решения целого ряда задач.

И в нем могут случаться поломки, выявить которые поможет прибор для измерения параметров электротока — мультиметр.

Из этой статьи вы узнаете, как проверить трансформатор тока мультиметром (прозвонить), и каких правил следует придерживаться при этом.

Возможные неисправности

Как известно, любой трансформатор состоит из следующих компонентов:

  • первичная и вторичная катушки (вторичных может быть несколько);
  • сердечник или магнитопровод;
  • корпус.

Таким образом, перечень возможных поломок довольно ограничен:

  1. Поврежден сердечник.
  2. Перегорел провод в какой-либо из обмоток.
  3. Пробита изоляция, вследствие чего имеется электрический контакт между витками в катушке (межвитковое замыкание) либо между катушкой и корпусом.
  4. Изношены выводы катушек или контакты.

трансформатор тока

Некоторые из дефектов определяются визуально, поэтому трансформатор в первую очередь нужно внимательно осмотреть. Вот на что при этом следует обращать внимание:

  • трещины, сколы изоляции либо ее отсутствие;
  • состояние болтовых соединений и клемм;
  • вздутие заливки или ее вытекание;
  • почернения на видимых поверхностях;
  • обуглившаяся бумага;
  • характерный запах горелого материала.

Если явных повреждений нет, следует проверить устройство на работоспособность при помощи приборов. Для этого нужно знать, к каким обмоткам относятся все его выводы. На преобразователях больших размеров данная информация может быть представлена в виде графического изображения.

Методы проверок трансформатора мультиметром

Прежде всего, следует проверить состояние изоляции трансформатора. Для этого мультиметр необходимо переключить в режим мегомметра. После этого замеряют сопротивление:

  • между корпусом и каждой из обмоток;
  • между обмотками попарно.

Напряжение, при котором должна осуществляться такая проверка, указывается в технической документации на трансформатор. К примеру, для большинства высоковольтных моделей замер сопротивления изоляции предписано проводить при напряжении 1 кВ.

проверка трансформатора

Требуемое значение сопротивления можно посмотреть в технической документации или в справочнике. Например, для тех же высоковольтных трансформаторов оно составляет не менее 1 мОм.

Данный тест не способен выявить межвитковые замыкания, а также изменения свойств материалов проводов и сердечника. Поэтому обязательно нужно проверить рабочие характеристики трансформатора, для чего применяют следующие методы:

самодельный преобразователь с 220 на 12 вольтНапряжение в 220 Вольт воспринимают далеко не все приборы. Трансформатор 220 на 12 Вольт понижает напряжение для возможности использования электроприборов.

Как проверить варистор мультиметром и для чего нужен варистор, читайте далее.

С правилами проверки напряжения в розетке мультиметром вы можете ознакомиться по ссылке.

Прямой метод (проверка схемы под нагрузкой)

Именно он первым приходит на ум: нужно замерять токи в первичной и вторичной обмотках работающего устройства, а затем путем деления их друг на друга определить фактический коэффициент трансформации. Если он соответствует паспортному — трансформатор исправен, если нет — нужно искать дефект. Этот коэффициент можно вычислить и самостоятельно, если известно напряжение, которое должен выдавать прибор.

К примеру, если на нем написано 220В/12В, то перед нами понижающий трансформатор, следовательно, ток во вторичной обмотке должен быть в 220/12 = 18,3 раза выше, чем в первичной (термин «понижающий» относится к напряжению).

проверка однофазного трансформатора

Нагрузку к вторичной обмотке нужно подключать такую, чтобы в обмотках протекали токи не ниже 20% от номинальных значений. При включении будьте настороже: если раздастся треск, появится запах гари, либо вы увидите дым или искрение, прибор нужно сразу же отключить.

Если у тестируемого трансформатора несколько вторичных обмоток, то те из них, которые не подключены к нагрузке, должны быть закорочены. В разомкнутой вторичной катушке при подключении первичной к источнику переменного тока может появиться высокое напряжение, способное не только вывести из строя оборудование, но и убить человека.

обмотка преобразователя

Если речь идет о высоковольтном трансформаторе, то перед включением нужно проверить, не нуждается ли его сердечник в заземлении. Об этом говорит наличие специальной клеммы, помеченной литерой «З» или специальным значком.

Прямой метод проверки трансформатора позволяет со всей полнотой оценить состояние последнего. Однако, далеко не всегда имеется возможность включить трансформатор с нагрузкой и произвести все необходимые замеры.

Косвенный метод

В состав данного метода входят несколько тестов, каждый из которых отображает состояние прибора в каком-то одном аспекте. Следовательно, все эти тесты желательно проводить в совокупности.

Определение достоверности маркировки выводов обмоток

Для проведения этой проверки мультиметр нужно переключить в режим омметра. Далее нужно попарно «прозвонить» все имеющиеся выводы. Между теми из них, которые относятся к разным катушкам, сопротивление будет равным бесконечности. Если же мультиметр показывает какое-то конкретное значение, значит выводы принадлежат одной катушке.

Тут же можно сравнить замеренное сопротивление с приведенным в справочнике. Если имеет место расхождение более, чем на 50%, значит случилось межвитковое замыкание либо частичное разрушение провода.

замер тока

Учтите, что на катушках с большой индуктивностью, то есть состоящих из значительного числа витков, цифровой мультиметр может ошибочно показывать завышенное сопротивление. Желательно в таких случаях пользоваться аналоговым прибором.

Проверять обмотки следует постоянным током, который трансформатор преобразовывать не может. При использовании переменного в других катушках будет наводиться ЭДС и вполне возможно, что она окажется достаточно высокой. Так, если на вторичную катушку понижающего трансформатора 220/12 В подать переменное напряжение всего в 20 В, то на выводах первичной появится напряжение в 367 В и при случайном касании их пользователь получит сильный удар током.

Читайте так же:
Однофазный двухтарифный счетчик что это такое

Далее нужно определить, какие выводы следует подключать к источнику тока, а какие — к нагрузке. Если известно, что трансформатор понижающий, то к источнику тока нужно подключать катушку с наибольшим числом витков и наибольшим сопротивлением. С повышающим трансформатором все обстоит наоборот.

проверка мультиметром - варианты

Но бывают модели, у которых среди вторичных катушек имеются как понижающие, так и повышающие. Тогда первичную катушку можно с определенной долей вероятности распознать по следующим признакам: выводы ее крепятся обычно в стороне от остальных, так же и катушка может находиться на каркасе в отдельной секции.

Возможно, кто-то из его участников имел дело с такими устройствами и может подробно рассказать, как его нужно подключать.

Если во вторичной катушке имеются промежуточные отводы, необходимо распознать ее начало и конец. Для этого нужно определить полярность выводов.

Определение полярности выводов обмоток

В роли измерителя следует использовать магнитоэлектрический амперметр или вольтметр, у которого полярность выводов известна. Прибор нужно подключить к вторичной катушке. Удобнее всего пользоваться теми моделями, у которых «ноль» расположен посредине шкалы, но за неимением такового подойдет и классический — с местоположением «нуля» слева.

Если вторичных катушек несколько, прочие нужно зашунтировать.

проверка полярности

Через первичную катушку нужно пропустить постоянный ток небольшой силы. На роль источника подойдет обычная батарейка, при этом в цепь между ней и катушкой нужно включить резистор — чтобы не получилось короткого замыкания. Таким резистором может послужить лампа накаливания.

Выключатель в цепь первичной катушки устанавливать не нужно: достаточно следя за стрелкой мультиметра замкнуть цепь, коснувшись проводом от лампы вывода катушки, и тут же разомкнуть ее.

При разнополярном подключении — влево.

В момент отключения питания будет наблюдаться противоположная картина: при однополярном подключении стрелка сдвинется влево, при разнополярном — вправо.

На приборе с «нулем» в начале шкалы движение стрелки влево сложнее заметить, так как она почти сразу отскакивает от ограничителя. Поэтому следить нужно внимательно.

По той же схеме проверяются полярности всех остальных катушек.

измерительный прибор Мультиметр – очень нужный прибор для замера силы тока, который применяется для выявления неисправностей тех или иных приборов. Какой мультиметр лучше выбрать для домашнего использования – читайте полезные советы по выбору.

Инструкция по проверке диодов мультиметром представлена по ссылке.

Снятие характеристики намагничивания

Чтобы иметь возможность воспользоваться данным методом, нужно подготовиться загодя: пока трансформатор новый и заведомо исправный, снимают его так называемую вольт-амперную характеристику (ВАХ). Это график, отображающий зависимость напряжения на выводах вторичных катушек от величины протекающего в них тока намагничивания.

снятие намагничивания

Разомкнув цепь первичной катушки (чтобы результаты не искажались помехами от находящегося поблизости силового оборудования), через вторичную пропускают переменный ток различной силы, измеряя каждый раз напряжение на ее входе.

Мощности используемого для этого блока питания должно быть достаточно для насыщения магнитопровода, которое сопровождается уменьшением угла наклона кривой насыщения до нуля (горизонтальное положение).

Измерительные приборы должны относиться к электродинамической или электромагнитной системе.

По мере использования устройства нужно с определенной периодичностью снимать ВАХ и сравнивать ее с первоначальной. Снижение ее крутизны будет свидетельствовать о появлении межвиткового замыкания.

Видео на тему

Программа для проверки трансформаторов тока 0,4кВ

Дата17 июля 2013 Авторk-igor

Программа для проверки трансформаторов тока 0,4кВ

Чтобы не получать замечания от энергосбыта нужно правильно выбирать трансформаторы тока для счетчика трансформаторного включения. В одной из статей я уже приводил пример проверки ТТ. Сегодня представлю свою программу для проверки трансформаторов тока 0,4кВ.

В конце статьи представлены нормативные документы, на основании которых была выполнена программа по проверке трансформаторов тока 0,4кВ.

Необходимо иметь ввиду, что при токах до 100А необходимо предусматривать счетчики прямого включения. Получается минимальный трансформатор тока, который мы можем использовать на стороне 0,4кВ – 150/5.

Для подключения расчетных счетчиков необходимо использовать трансформаторы тока и напряжения класса точности не более 0,5.

Коэффициент трансформации (отношение первичной обмотки ТТ к вторичной обмотке) трансформаторов тока выбирается по расчетному току. Значение расчетного тока не должно превышать номинальный ток трансформатора тока.

Если коэффициент трансформации ТТ будет завышен, то счетчик будет считать электроэнергию с классом точности не гарантированным заводом-изготовителем. Согласно ГОСТ 7746—2001 трансформаторы тока допускают перегрузку в 20%, но не более двух часов в неделю. Об этом следует помнить при организации учета электроэнергии на двухтрансформаторной подстанции с возможностью подключения всей нагрузки на один трансформатор, т.к. трансформаторы тока выбираются по аварийному режиму.

Поскольку белорусские нормы немного отличаются от российских, я сделал отдельно 2 отдельных файла по проверке ТТ. На самом деле программы практически ничем не отличаются. Основное отличие в трактовке п.1.5.17 ПУЭ и п.4.2.4.4 ТКП39-2011. Слова разные, а суть одна и та же =)

Внешний вид программы:

Внешний вид программы для проверки трансформаторов тока

Внешний вид программы для проверки трансформаторов тока

В отличие от других моих программ внешний вид немного изменился. Теперь весь расчет прозрачен и при необходимости может быть предоставлен для обоснования своего выбора.

Для расчета достаточно ввести расчетный ток, минимальный потребляемый ток и выбрать номинальный ток первичной обмотки трансформатора. Ток вторичной обмотки, как правило, равен 5А.

Читайте так же:
Трансформатор тока для счетчика непрямого включения

Чтобы получить программу, зайдите на страницу МОИ ПРОГРАММЫ.

В программе производится проверка согласно ПУЭ (ТКП), т.к. там представлены более жесткие требования, чем в РМ-2559. В РМ-2559 сказано, что минимальный ток вторичной обмотки для электронных счетчиков должен быть 0,1А или 2%. В ПУЭ (ТКП) про электронные счетчики ничего не сказано, значит требования распространяются на все счетчики и минимальный ток вторичной обмотки нужно принимать не менее 0,25А или 5%.

1 ТКП 339-2011. Электроустановки на напряжение до 750 кВ…

2 ПУЭ 7. Правила устройства электроустановок.

3 РМ-2559. Инструкция по проектированию учета электропотребления в жилых и общественных зданиях.

4 ГОСТ 7746—2001. Трансформаторы тока. Общие технические условия.

Советую почитать:

Рубрика: Про расчет Метки: трансформатор тока

комментариев 28 “Программа для проверки трансформаторов тока 0,4кВ”

Отличная статья, и как раз вовремя)).

Сейчас проектирую объект, нужно трансформаторы подобрать было, хотя ток не более 30 ампер, проблема в том что сечение проводов (по потере) слишком большое для счетчика. я все-же поставил тт.

Комент почему-то в спам попал)) До 100А нужно брать счетчики прямого включения.

Сечение жилы не позволяет

Не любит энергосбыт ставить трансформаторы тока на такой ток. А почему завышенное сечение кабеля, если ток всего 30А? Я так понимаю сечение не менее 35мм2?

сечение 35, хотя если потери сделать 5% то и того 50мм2 надо, просто очень длинный участок наружного декоративного освещения, а подключить дали только с одной точки, и она находится с краю нагрузки.

А как скачать-то эту програмку? Кнопка «открыть ссылку» не работает

Нажмите на одну из 4-х социальных кнопок и ссылка откроется.

Андрей, питающий кабель у вас будет подключен к коммутационному аппарату (рубильнику или автомату), а от аппарата до счетчика будет сделана разводка проводами ПВ3 25мм2 и все будет нормально. После счетчика будет защитный автомат, т.е. внешние сети не будут напрямую подключаться к счетчику.

что-то не хочет ссылка открываться (жал на все три иконки соц сетей)

Скачайте со страницы МОИ ПРОГРАММЫ, там есть ссылка с DepositFiles.

Огромное Вам спасибо за замечательный сайт и интересные статьи.

Мне приходилось слышать абсолютно разнополярные мнения по поводу влияния установки трансформаторов тока с завышенным номиналом на учёт счетчиком электроэнергии. Одни, говорят (и я в том числе) что благодаря этому счётчик не считает малые значения токов (и, выходит, это выгодно абоненту), другие же утверждают (правда безаргументированно), что это приводит к резкому переучету (что, получается, играет на руку Энергосбытовой компании). Помогите, пожалуйста, разобраться с данным вопросом ! 🙂

Спс, Александр. Благодаря таким словам хочется еще больше развивать свой блог.

Суть этой проверки в том, чтобы подобрать трансформаторы тока с нужным номиналом и при этом трансформатор тока гарантированно работал в необходимом классе точности.

Если у нас завышен номинальный ток трансформатора тока (а у нас ЭНЕРГОСБЫТ такое не согласовывает), то скорее всего счетчик может изменять показания как большую сторону так и в меньшую сторону.

А нас ещё заставляют проверять ТТ по оптимальной загрузке: т.е. выдерживать соотношение мощностей измерительных приборов и ТТ.

Это по ГОСТ 7746—2001 (МЭК 44-1:1996)

Предел вторичной нагрузки, должен быть (25-100)% номинального значения. Для трансформаторов с номинальными вторичными нагрузками 1; 2; 2,5; 3; 5 и 10 ВА нижний предел вторичных нагрузок: 0,8; 1,25; 1,5; 1,75; 3,75 и 3,75 ВА соответственно. Иногда догрузочные резисторы использовать приходится.

Спс за информацию, буду иметь ввиду.

Значением минимального потребляемого тока можно поманипулировать? Потому что в реале он может быть совсем маленьким, например ночью, и узнать его точное значение я не знаю как. Значит я просто подгоню значение минимального потребляемого тока, чтобы условия в программе выполнялись. Можно так?

Да, а как по-другому?))

Проверка по 1.5.17 совершенно бессмысленна, почему все невнимательно читают ПУЭ. В ПУЭ сказано:

Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин)

Т.е. применить ТТ с заниженным Ктт допустимо, только если ТТ с нужными Ктт не проходят проверку по условиям электродинамической или термической стойкости.

Например, ток присоединения 50 А, номинальный ток ТТ 50 А, но токи КЗ не позволяют использовать ТТ с номинальным током 50 А, а ТТ с Ктт 100/5 проходят по условиям электродинамической стойкости. Тут Трансы 100/5 и проверяют по 1.5.17 ПУЭ

Если у вас расчетный ток 90А, а номинальный ток ТТ 100, эту проверку делать смысла нет никакого!

И сама проверка лажа, если максимальный ток определяют как правило верно, то минимальный ток берут как правило 10 % от максимального (чем регламентируется? А ничем! Лажа!) конечно в любом случае если у тебя расчетный ток больше 50% номинального, минимальный будет больше условия по ПУЭ.

И приводить токи из первичной обмотки ко вторичной ни какого смысла нет, абсолютно бессмысленная операция, и в том и в том случае делится все на одно и тоже число.

До 100 А трансформатор тока, как правило, не применяют.

ПУЭ п.1.4.2. В электроустановках до 1 кВ трансформаторы тока по режиму КЗ не проверяются.

Еще как применяются, но с чего вы взяли, что в моем примере говорится о 0,4 кВ, я имел ввиду десятку.

Но вопрос не в уровне напряжения, вопрос в бессмысленности расчета.

Читайте так же:
Штраф за нарушение пломбы счетчика электроэнергии

То, что Вы привели пункт 1.4.2 ПУЭ, хорошо, но если читать пункт 1.5.17 там сказано: допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин) почему-то все до выделенной части не дочитывают.

Иными словами, завышенный Ктт применить можно только в том случае, если ваши ТТ с нормальным Ктт не удовлетворяют требованию по электродинамической и термической стойкости. Вот Вы пишете, что ТТ по 0,4 кВ не проверяют по режиму КЗ, ну раз не проверяют, значит и расчет ваш не нужен. Выбирайте Ктт по максимальному рабочему току и дело с концом, зачем эти лишние движения.

Кстати, уведомления на E-mail не приходят

Денис, а где написано, что в статье речь идет про ТТ 10кВ? Прочитайте название темы.

По поводу уведомлений, все приходит, возможно вы не подтвердили свой e-mail. Раньше была такая проблема, но я где-то месяц назад устранил.

Игорь, а какая разница какого уровня напряжения трансформаторы тока? Суть не в этом, суть в том, что расчет не имеет смысла, потому, что условие 40 и 5% применяется только тогда когда ТТ с номинальным Ктт не проходят по условиям электродинамической и термической стойкости.

В смысл в том, что ТТ 0,4кВ не проверяют по данным параметрам и до 100А применяют счетчики прямого включения.

Если ТТ не проверяют по данным параметрам, то ваш расчет не имеет смысла, потому что ПУЭ 1.5.17, как раз говорит о ТТ которые не проходят эту проверку:-), именно из-за того, что ТТ не проходят проверку по ЭДиТ стойкости, допускается увеличить их коэффициент, что бы они проходили.:-)

Да причем здесь вообще коэффициенты? почему вы к ним привязались?

Ну перечитайте мой пример по другому:

Например, ток присоединения 250 А, номинальный ток ТТ 250 А, но токи КЗ не позволяют использовать ТТ с номинальным током 250 А, (они не проходят проверку), а ТТ с Ктт 300/5 проходят по условиям электродинамической стойкости. Тут Трансы 300/5 по 1.5.17 ПУЭ и используют, они завышены.но так как 250/5 по ЭДиТ стойкости применять нельзя, с допущением применяют 300/5

Вы главного как понять не можете, этот пункт относится только к тем ТТ которые проверяются по токам КЗ, если по токам КЗ он не проверяется, значит не надо мудрить берите ближайший длительно допустимый ток ТТ к максимальному расчетному если максимальный 250 берите 250, ктт 250/5

Я не знаю как еще вам объяснить, там в пункте написано допускается применять завышенные КТТ, а уже завышенный коэффициент проверяется по 40 и 5 %. Так зачем вам применять завышенный Ктт, Вы применяйте не завышенный и тогда не надо проверять по 40 и 5 %, тем более, что по 5% процентам вы ни когда не проверите, вы только лажу сможете предоставить.

До 100 А используют и трансформаторы тока, например, максимальное сечение кабеля которое можно воткнуть в счетчик прямого включения 16 мм. ВВГнг 4×16 длительно допустимый ток, около 70 А. а если вам нужен ток 90 А, надо брать 4×25, без использования ТТ вы кабель в счетчик тупо не воткнете. Например, нагрузка нежилых помещений редко превышает 100 А по току в аварийном режиме, а кабель для снижения потерь прокладывается 95 кв. сетевые сейчас требуют организовать учет на границе, (представьте кабель абонентский) кабель 95 кв. вы в счетчик не воткнете. И таких ситуаций полно.

Само завышения коэффициента возникает из-за того, что ТТ не проходят проверку по ЭД и Т стойкости, а если Ктт завышается, то он уже проверяется по 40 и 5%. У вас по 0,4 кВ этой проверки не производится, у вас по любому должны применяться не завышенные коэффициенты.

Лично я беру ближайший ТТ и ничего не рассчитываю, но если вы возьмете ТТ с завышенным кф трансформации энергосбыт может потребовать у вас этот расчет.

По поводу подключения кабеля большого сечения к счетчику. Кабель сначала подключается к вводному автомату, а потом уже к счетчику. Если вы выбрали кабель 95мм с учетом потери напряжения, то это не значит, что на счетчик вы должны завести тоже 95мм2. От автомата идет уже не кабель, а провода и длительно допустимый ток нужно смотреть по другой колонке.

Этот расчет нужен, только если ТТ не проходят по токам короткого, завышенный Ктт в иных случаях брать нельзя, многие сотрудники сбытов требуют это расчет, но это не значит, что они правильно трактуют ПУЭ.

Не всегда, если кабель абонентский (большого сечения) и учет на ТП, без счетчика трансформаторного включения не обойтись. Кроме того сейчас сетевые компании требуют устанавливать учет строго на границе, до коммутационного аппарата, без ТТ этого не сделать, так как непосредственно перед счетчиком прямого включения должен быть установлен коммутационный аппарат.

Не понял я. Каким образом сечение кабеля влияет на тип счетчика? Даже если вы до вашего щита привели сечение 240мм, то подключаете этот кабель на автомат, скажем 100А, а от автомата ведете сечением 35мм до счетчика.

Коммутационный аппарат: рубильник, выключатель нагрузки, автоматический выключатель.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector