Buderus-trade.ru

Теплотехника Будерус
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Внимание, радиация. Строим свой интенсиметр* в ожидании Doomsday

Внимание, радиация. Строим свой интенсиметр* в ожидании Doomsday

Однажды в телевизоре появился бледный как смерть Министр Финансов и заявил:

— Финансовый кризис нас не затронет. Потому что. Я вам точно говорю.
Население, знающее толк в заявлениях официальных лиц, выматерилось негромко и отправилось закупать соль, спички и сахар.
М.Жванецкий

В последнее время в американских (и не только) СМИ популярна тема грядущей Третьей мировой войны. Некоторые даже догадываются, что она будет атомная (типичный пример The United States and Russia Are Prepping for Doomsday) и произойдет в ближайшие полгода или около того. Если вы уже проверили аптечку, купили крупы, мыло, соль, спички и сахар, то пора подумать о таком важном атрибуте встречи Doomsday, как дозиметр. Предлагаемая схема дозиметра отличается высокой чувствительностью и простотой изготовления из-за отсутствия необходимости наматывать трансформатор высокого напряжения. Также к достоинствам конструкции относится применение широко распространенных деталей, и возможность работать от разных источников питания (надеюсь все помнят как сделать батарейки из картошки), поэтому с ремонтом и эксплуатацией в постапокалиптическом мире будет не слишком сложно.

*Интенсиметр — дозиметр плотности потока энергии ионизирующих частиц.

Дозиметр построен на четырех счетчиках Гейгера-Мюллера (далее в тексте как «трубка» или не совсем корректно «счетчик») — популярных и доступных трубках СБМ-20. При покупке следует обратить внимание на дату изготовления.

Трубка чувствительна к у и ограничено β, и не чувствительна к α-излучению.

СБМ-20 изготовлен в виде герметичной тонкостенной гофрированной металлической трубки, из которой откачан воздух, а вместо него добавлен инертный газ под небольшим давлением, с добавлением примеси (Ne + Br2 + Ar). По оси трубки натянута тонкая проволока, а коаксиально с ней расположен металлический цилиндр. И трубка и проволока являются электродами: трубка – катод, а проволока – анод. К катоду подключают минус от источника постоянного напряжения, а к аноду – через очень большое постоянное сопротивление – плюс от источника постоянного напряжения. При попадании в счетчик заряженной частицы некоторое количество газа ионизируется, и под воздействием напряжения между катодом и анодом ионы и электроны начинают двигаться — в трубке возникает кратковременный ток. Напряжение на аноде трубки кратковременно падает — получаем инвертированный импульс.

СБМ-20 имеет контакты под цокольное соединение. Ни в коем случае не припаивайтесь к ним. Для подключения СБМ-20 подходят гибкие контакты для печатной платы, предназначенные для трубчатых плавких предохранителей диаметром 6,3 мм.

Схемы старых армейских дозиметров основаны, прежде всего, на требованиях к устойчивости оборудования к воздействию электромагнитного импульса от близкого ядерного взрыва, питания от широко распространенных элементов питания (двух угольно-цинковых или щелочных типоразмера D (LR20)). Индикация радиоактивности — или звуковая в наушниках либо в наушниках и одновременно на микроамперметр со шкалой с несколькими диапазонами и проверкой источника питания. Первоначально в дозиметрах (IBG-58T) применялся вибрационный преобразователь напряжения, а затем генератор на транзисторе и ферритовом трансформаторе, для стабилизации напряжения применялась лампа — коронный стабилизатор.

image
Схема армейского индикатора радиоактивности чехословацкой армии IBG-58T

Большинство схем в Интернет построено на преобразователе напряжения с использованием трансформатора на ферритовом сердечнике, что часто останавливает желающих сделать дозиметр. А питающее напряжение обычно повышено до 12 вольт.

Мои основные требования к схеме были:

  • в применении напряжений используемых в схемах с микроконтроллерами — 5 вольт или ниже;
  • легкодоступные индуктивности или трансформаторы;
  • масштабируемость и возможность использования других счетчиков Гейгера-Мюллера путем регулирования напряжения в пределах, по крайней мере, 200-460 вольт;
  • состоящая из отдельных функциональных блоков, соединенных последовательно;
  • конструкция может быть легко отремонтирована.

Первый блок представляет собой генератор колебаний с постоянной частотой около 1,5 кГц и скважностью примерно 1:1. Генератор построен на таймере 555 (в CMOS версии — питание от 3 вольт). Подстроечный резистор позволяет регулировать частоту в диапазоне от 1,1 до 5,2 кГц, поэтому возможно регулировать стабилизацию напряжения в самых широких пределах. По умолчанию установлено высокое сопротивление подстроечного резистора, что соответствует низкой генерируемой частоте.

Второй блок представляет собой повышающий преобразователь с легкодоступным для покупки миниатюрным дросселем 33 мГ (Matsutami 09P-333J). На выходе которого, до умножителя напряжения, получается почти 300 вольт. По этой причине выбран транзистор 2N6517 с максимальным напряжением (К-Э) 350 вольт. Напряжение во время работы приведено ниже на осциллограмме:


Осциллограмма

В умножителе напряжения используются металлопленочные конденсаторы 22н 400В. На выходном электролитическом конденсаторе 1 мкф напряжение может составлять 450 вольт, если параллельно подключить цепочку из стабилитронов BZX83V075 (75V х5), без которых напряжение может достигать 600 вольт и в этом случае необходимо применить конденсатор на 630 вольт. При измерении высокого напряжения необходимо принимать во внимание, что новый электролитический конденсатор имеет более высокую утечку и должен быть формован. В течении 15 минут работы нового конденсатора напряжение стабилизируется.


Вид собранного устройства на макетной плате

Напряжение на трубке стабилизируется на 375 вольтах. Это ниже, чем, рекомендуемые производителем и другими инструкциями по изготовлению дозиметров, 400 вольт. Я пытался измерить зависимость чувствительности трубки при изменении напряжения, и в диапазоне 330-460 вольт изменение напряжения не приводит к существенному изменению чувствительности, а при около 300 вольт наблюдается небольшой спад. Работа трубки резко изменяется при напряжении около 270 вольт.

Преобразователь напряжения достаточно нежный источник и подключение 10 МОм-ного вольтметра приводит к заметному просаживанию напряжения. Влияние вольтметра будет незначительно при его сопротивлении около 100 МОм. Такой импровизированный вольтметр можно сделать, подключив 10 МОм-ный вольтметр через последовательно соединенные девять(9) резисторов по 10МОм. Измеренное напряжение необходимо умножить на 10.


Чувствительность СБМ-20 при разном анодном напряжении.

Анодный резистор счетчика Гейгера составлен из пяти резисторов по 1 МОм. В цепь катода счетчика включен резистор 100кОм, с которого снимаются инвертированные выходные импульсы, и затем транзистором приводятся к логическому уровню 5В. Импульсы имеют длительность около 250 микросекунд. Эти импульсы обрабатываются входом микроконтроллера (можно обрабатывать смартфоном, добавив разделительный конденсатор — как в публикации MaxFactor «Как сделать дозиметр и привязать его к Android»).

Если целью является только индикация интенсивности излучения без дальнейшей обработки, то мы поставим еще одну микросхему 555, длительность выходных импульсов которой устанавливаются подстроечным резистором в пределах 2,5 мс — 25 мс. На низких уровнях интенсивности излучения мигающий светодиод гораздо более заметен. Также заметнее, чем обычное «потрескивание», звуковой тон активного динамика (buzzer) KPE222A с частотой собственного сигнала 3,2 кГц.

Дополнительный блок световой и звуковой индикации.

Напряжение на трубке в 375 вольт сохраняется постоянным при изменении питающего напряжения в пределах 3,8 до 5,5 В. Потребление преобразователя составляет 12 мА при 5 вольт, что не составит проблем запитать его от источника питания микроконтроллера. Как отдельное устройство дозиметр может работать от 4-х никель-металлогидридных элементов, 3 Ni-Zn элементов, или от стабилизатора 5 В от любого источника с напряжением до 24 В.

При создании первой версии устройства на макетной плате выяснилось, что необходимо уделить внимание на тщательную очистку платы от флюса. Например остатки паяльной пасты Pro’sKit вызывали токи утечки, снизившие напряжение на выходе преобразователя напряжения до 120 вольт. Классическая канифоль намного лучше, но и в этом случае уместна очистка платы.

Если трубка счетчика Гейгера-Мюллера расположена далеко от платы, то следует обратить внимание на кабель т.к. характеристики не каждого подходят для напряжения 400 вольт. Я столкнулся с пробоем на старом коаксиальном кабеле, что отражалось на измерении импульсов. Важной также является ёмкость кабеля, у самой трубки ёмкость 4пФ и кабель влияет на время необходимое трубке для восстановления после прохождения частицы и соответственно влияет на линейность и верхний предел измерений. Желательно чтобы кабель имел ёмкость как можно меньше.


Металлический корпус для счетчика Гейгера-Мюллера

Трубки могут быть размещены непосредственно на плате или внутри корпуса. Они будут измерять уровень радиации в космосе, но вряд ли смогут изучить точечный источник радиации, к тому же они потеряют большую часть чувствительности к слабым источникам радиации, которая сильно зависит от минимального расстояния от источника до трубки.

Для разделения у и β-излучений, к которым чувствителен счетчик, может быть использован алюминиевый корпус с диафрагмой, как на предыдущей фото. у и β свободно проходят через прорези, и только у проникает через 5 мм алюминиевый корпус. При установке в корпус трубка должна быть правильно сориентирована, корпус заземлен, провод заизолирован. Для наших экспериментов достаточно использовать только трубку с заизолированными выводами.

Собранный и включенный дозиметр зарегистрировал фон около 20 импульсов в минуту. Надежно реагировал на шарик из уранового стекла, приложенный к трубке и даже на калильную сетку (Торий-232) с расстояния 10 см. Более слабые источники радиации как зола или стиральный порошок обычно не очень хорошо распознаются на слух, но убедительно определяются графической регистрацией результатов измерения. Далее мы будем подключать чувствительный дозиметр с Arduino и «исследовать» радиоактивное излучение от предметов домашнего обихода.

Подключение к Arduino

В ближайшее время наша цель будет завершить создание удобного измерительного устройства с дисплеем, с пересчетом дозы радиационного воздействия при долгосрочном наблюдении, с графическим отображением или контролем предустановленных уровней интенсивности излучения и сигнализацией тревоги при превышении уровней. Пока же мы сконцентрируемся на простой графической индикации. Высокая чувствительность и более высокая фильтрация помех позволит нам проводить эксперименты с более слабыми источниками радиоактивного излучения.

И так соедините выход устройства с Arduino Uno на пин D2. Одиночные импульсы суммируются в переменной через обработку прерывания, и графически отображается количество импульсов в минуту. Для начала опытов такой программы нам достаточно. Даже одна трубка может измерять достаточно точно, но потребуется достаточно много времени для проведения измерений. Необходимо потратить на циклы десятки минут и одно измерение из нескольких циклов может занять несколько часов. Другой способ сделать тоже самое мы можем наблюдать в приборах серийного производства — это делается увеличением количества счетчиков Гейгера-Мюллера включенных параллельно, что увеличит количество захваченных частиц. Как подключить несколько трубок показывает эта схема:


Параллельное подключение нескольких трубок

На следующем рисунке показан результат измерения излучения линзы от старого мощного проектора. Оптическое стекло в сравнении с урановым стеклом имеет очень низкую активность. При «прослушивании» была отмечена некая активность, но сложно было оценить, насколько она велика.


Измерение активности оптической линзы

На записи одна решетка (#) соответствует одному импульсу. Первые 20 минут записывался радиоактивный фон. Наименьшее количество зарегистрированных импульсов было 13, максимум — 36. Красная линия показывает среднее значение, в данном случае, 23 импульса в минуту.

Запись измерения активности оптической линзы

После 16 минут записи с линзой лежащей на трубке, среднее значение стало 46 импульсов в минуту. Ровно в два раза больше. Мы можем сделать вывод, что оптическая линза внесла свой вклад в количестве 23 импульсов в минуту, хотя этот результат является лишь приблизительным и статистически не совсем надежным. Мы можем даже попытаться измерить слабые источники излучения такие, как стиральный порошок, пепел, тропические фрукты, металлические сплавы, магниты или что-нибудь еще. Аналогично мы можем попытаться обнаружить присутствие источников излучения на небольших расстояниях, но, возможно, и на 10, 30 или 100 см. Аналогичный результат, как упоминаемый объектив, обеспечивает также измерение старого тахометра на расстоянии 0,5 метра или проверка старых отвалов рудника возле Мнишек-под-Брди.

При проведении измерительного цикла в течении 5 минут, и проведении 10 циклов без источника (замер фона), а затем 10 циклов с источником возможно обнаружить активность бананов. К сожалению, я не смог определить конкретно происхождение бананов, активность которых от этого зависит достаточно сильно. Одно только измерение длительностью 100 минут не показательно — увеличение количество импульсов относительно фона около 20%. И это можно было бы свести к статистической ошибке, но при проведении четырех измерений подряд (два измерения фона, источника и два измерения в обратном порядке) становится достаточно очевидно, что «там что-то есть» и мы можем даже оценить насколько это интенсивно. Средний вклад банана составил 4 обнаруженных частицы в минуту, что будет соответствовать 8 nSv/h. Более чувствительные и точные измерения в разумный период времени трудно достичь.


Результат измерения радиоактивности банана

Перевод публикации Pozor, radiace! с чешского. Автор: Михал Черны, 17 июня 2016 года.

Характеристика счетчика гейгера сбм 20

ПОЙМИТЕ РАЗНИЦУ, ИЛИ КАК ПРАВИЛЬНО ВЫБРАТЬ ДОЗИМЕТР.

Чем отличается профессиональный дозиметр от бытового?
Какие характеристики дозиметров — ключевые?
Как выбрать дозиметр?

Основные группы дозиметров

При всем многообразии представленных на рынке дозиметров большую их часть можно разделить на две группы: дозиметры на счетчиках Гейгера-Мюллера и дозиметры, использующие в качестве детекторов сцинтилляторы.
Важной характеристикой детектора гамма-излучения является его эффективность. Эффективность счётчика Гейгера-Мюллера зависит от толщины стенок счётчика, их материала и энергии гамма-излучения. Толщина стенки счётчика выбирается из условия её равенства длине свободного пробега вторичных электронов в материале стенки (обычно — порядка 50 мкм). При большой толщине стенки вторичные электроны не пройдут в рабочий объем счётчика, и возникновения импульса тока не произойдет. Так как гамма-излучение слабо взаимодействует с тонкими стенками счетчика, то обычно эффективность гамма-счётчиков также мала и составляет всего 1-2 %. Другим недостатком счётчика Гейгера-Мюллера является то, что он не даёт возможность идентифицировать частицы и определять их энергию. Эти недостатки отсутствуют в сцинтилляционных счётчиках.

Эффективность детектора определяется массой его рабочего вещества — той его части, в которой происходит поглощение и преобразование гамма-излучения. Масса счетчика Гейгера-Мюллера СБМ-20, применяемого в подавляющем большинстве дозиметров — не более 9 г. Масса рабочего вещества (тонкой трубочки) — не более 1 г.

/>

Масса рабочего вещества сцинтилляционного детектора это весь объем кристалла. К примеру, для детектора на основе йодистого натрия диаметром 40мм и высотой 40 мм масса рабочего вещества — не менее 180 г. Эффективность детекторов на основе сцинтилляторов составляет 50…90%, в зависимости от типа и объема рабочего вещества. В итоге, чувствительность детекторов на основе сцинтилляторов в сотни раз превышает чувствительность счетчиков Гейгера-Мюллера.

Рекомендации МАГАТЭ
В августе 2003 года МАГАТЭ* совместно с Всемирной таможенной организацией, Европолом и Интерполом выпустили документ «Обнаружение радиоактивных материалов на границе» (ТЕСDOC-1312/R), который содержит обоснование основных требований к системам и приборам, обеспечивающим надежный радиационный контроль транспортных средств и пешеходов.
Основными (ключевыми) характеристиками таких приборов являются чувствительность и быстродействие. Эти характеристики связаны между собой. Это объясняется просто. Что такое чувствительность детектора гамма-излучения? Это количество зарегистрированных гамма-квантов при определенной мощности ионизирующего излучения. Чем больше этих зарегистрированных взаимодействий гамма-квантов с веществом детектора, тем раньше и с большей точностью мы измерим уровень гамма-излучения и обнаружим аномалию.

Уровни расследования и порога срабатывания тревожного сигнала прибора
Распределения отчетов прибора в большинстве случаев описываются Гауссовым распределением. Параметры этого распределения зависят от скорости счетов детектора прибора (от чувствительности) и от времени накопления результата.
В разделе 5 ТЕСDOC-1312/R приводятся понятия уровней расследования и порога срабатывания тревожного сигнала прибора. На рисунке 1 слева — кривая распределения фоновой частоты отчетов прибора, справа — кривая распределения частоты отчетов прибора при дополнительном облучении. При фоновом облучении отчеты, превышающие порог (правее точки С), будут вызывать ложные срабатывания тревожной сигнализации. Частота этих срабатываний пропорциональна площади части фонового пика (закрашено желтым цветом). При облучении отчеты прибора, не достигшие порога (левее точки С), будут означать пропуски аномалий. Частота пропусков пропорциональна площади части правого пика (закрашено синим цветом). Порог срабатывания прибора может быть установлен не только в точке С, как показано на рисунке 1. Увеличивая порог, мы уменьшим частоту ложных срабатываний и увеличим вероятность пропусков.

В качестве примера, приводим кривые распределения частоты отчетов для двух приборов, работающих в реальных фоновых условиях (рисунок 2): первый — на основе сцинтиллятора, имеющий чувствительность 800 с -1 /мкЗв/час (импульсов в секунду на микрозиверт в час), второй — на основе двух счетчиков Гейгера-Мюллера СБМ-20, суммарная чувствительность которых — 4 с -1 /мкЗв/час. Левые пики на графиках соответствуют фоновому излучению, а правые — режиму облучения.


Из приведенных графиков видно, что сцинтилляционный дозиметр «Ритм-1М» надежно и быстро различает аномальное облучение, в то время как такие же уровни облучения прибора на счетчиках Гейгера-Мюллера, даже при 20 секундах измерения не дают возможности отличить аномалию от фонового облучения.

Приведенные иллюстрации подтверждают тезис ТЕСDOC-1312/R о том, что для обнаружения радиоактивных материалов необходимой чувствительностью обладают только приборы на основе сцинтилляторов: «Хотя карманные приборы могут снабжаться детекторами излучения различных типов, лишь те приборы, в которых используется сцинтилляционные детекторы, обладают достаточной чувствительностью для этого вида применения».

Заключение

Резюмируя, можно сказать, что при выборе дозиметра стоит обращать особое внимание на чувствительность и быстродействие прибора, поскольку эти параметры являются ключевыми, и определяют пригодность тех или иных приборов для обнаружения радиационно-загрязненных фрагментов при входном контроле металлолома и других грузов.

Счётчик Гейгера

Счётчик Ге́йгера, счётчик Ге́йгера—Мю́ллера — газоразрядный прибор для автоматического подсчёта числа попавших в него ионизирующих частиц. Представляет собой газонаполненный конденсатор, который пробивается при пролёте ионизирующей частицы через объём газа. Изобретён в 1908 году Гансом Гейгером.

Дополнительная электронная схема обеспечивает счётчик питанием (как правило, не менее 300 V), обеспечивает, при необходимости, гашение разряда и подсчитывает количество разрядов через счётчик.

Счётчики Гейгера разделяются на несамогасящиеся и самогасящиеся (не требующие внешней схемы прекращения разряда).

Чувствительность счётчика определяется составом газа, его объёмом, а также материалом и толщиной его стенок.

В бытовых дозиметрах и радиометрах производства СССР и России обычно применяются счетчики с рабочим напряжением 390В:

  • «СБМ-20» (по размерам — чуть толще карандаша), СБМ-21 (как сигаретный фильтр, оба со стальным корпусом, пригодный для жёсткого β- и γ-излучений)
  • «СИ-8Б» (со слюдяным окном в корпусе, пригоден для измерения мягкого β-излучения)

Широкое применение счётчика Гейгера—Мюллера объясняется высокой чувствительностью, возможностью регистрировать разного рода излучения, сравнительной простотой и дешевизной установки. Счётчик был изобретен в 1908 году Гейгером и усовершенствован Мюллером.

Цилиндрический счётчик Гейгера—Мюллера состоит из металлической трубки или металлизированной изнутри стеклянной трубки, и тонкой металлической нити, натянутой по оси цилиндра. Нить служит анодом, трубка — катодом. Трубка заполняется разреженным газом, в большинстве случаев используют благородные газы — аргон и неон. Между катодом и анодом создается напряжение порядка 400В.Для большинства счетчиков существует так называемое плато, которое лежит приблизительно от 360 до 460 В,в этом диапазоне небольшие колебания напряжения не влияют на скорость счета.

Работа счетчика основана на ударной ионизации.γ-кванты, испускаемые радиоактивным изотопом, попадая на стенки счетчика, выбивают из него электроны. Электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на сопротивлении R образуется импульс напряжения, который подается в регистрирующее устройство. Чтобы счётчик смог регистрировать следующую попавшую в него частицу, лавинный разряд нужно погасить. Это происходит автоматически. В момент появления импульса тока на сопротивлении R возникает большое падение напряжения, поэтому напряжение между анодом и катодом резко уменьшается — настолько, что разряд прекращается, и счетчик снова готов к работе.

Важной характеристикой счётчика является его эффективность. Не все γ-фотоны, попавшие на счетчик, дадут вторичные электроны и будут зарегистрированы, так как акты взаимодействия γ-лучей с веществом сравнительно редки, и часть вторичных электронов поглощается в стенках прибора, не достигнув газового объема.

Эффективность счётчика зависит от толщины стенок счётчика, их материала и энергии γ-излучения. Наибольшей эффективностью обладают счётчики, стенки которых сделаны из материала с большим атомным номером Z, так как при этом увеличивается образование вторичных электронов. Кроме того, стенки счётчика должны быть достаточно толстыми. Толщина стенки счётчика выбирается из условия её равенства длине свободного пробега вторичных электронов в материале стенки. При большой толщине стенки вторичные электроны не пройдут в рабочий объем счётчика, и возникновения импульса тока не произойдет. Так как γ-излучение слабо взаимодействует с веществом, то обычно эффективность γ-счётчиков также мала и составляет всего 1-2 %. Другим недостатком счётчика Гейгера—Мюллера является то, что он не даёт возможность идентифицировать частицы и определять их энергию. Эти недостатки отсутствуют в сцинтилляционных счётчиках.

Примечание

Следует отметить, что по историческим причинам сложилось несоответствие между русским и английским вариантами этого и последующих терминов:

Характеристика счетчика гейгера сбм 20

Счетчик Гейгера-Мюллера цилиндрический СБМ20

Также это изделие может называться: СБМ-20, СБМ 20, sbm-20, sbm 20, sbm20.

СБМ20 счетчик Гейгера-Мюллера цилиндрический предназначен для регистрации жесткого бета- и гамма-излучения в радиотехнических устройствах.

Счетчик Гейгера-Мюллера СБМ-20 широко применяется в области радиационного контроля, датчиках обледенения, задымленности, а также в дефектоскопии.

Также на сайте zapadpribor.com представлены похожие счетчики.

Технические характеристики СБМ20:

Рабочее напряжение — 400 В.

Чувствительность — от 60 имп/мкР до 75 имп/мкР.

Разброс чувствительности — не более ±20%.

Диапазон регистрируемых мощностей экспоненциальных доз гамма-излучения — от 0,004 мкР/с до 40 мкР/с.

Энергия регистрации изделия счетчик СБМ-20:

— гамма-квантов — от 0,05 МэВ до 3 МэВ;

— бета-частиц — не менее 0,3 МэВ.

Протяженность плато счетной характеристики — не менее 100 В.

Напряжение начала счета — от 260 В до 320 В.

Наклон плато счетной характеристики — 0,1 %/В.

Дозиметрические характеристики СБМ-20:

— максимальная скорость счета (Nмах) — 4000 имп/с;

— уровень натурального фона (Nф) — 60 имп/мин.

Скорость счета при мощности 4 мкР∙с -1 от источника 137 Cs — от 240 имп∙с -1 до 280 имп∙с -1 .

Режим работы — токовый и импульсный.

Материал катода изделия счетчик Гейгера СБМ20 — нержавеющая сталь.

Минимальное мертвое время при 400 В — 190 мкс.

Площадь рабочей зоны — 8 см 2 .

Наполнение баллона — Ne+Br2+Ar.

Амплитуда импульса — не менее 50 В.

Выходная емкость — не более 10,5 пФ.

Сопротивление изоляции — 100 МОм.

Срок службы (количество импульсов) изделий счетчики СБМ-20 — не менее 2∙10 10 .

— диаметр — не более 11 мм;

— длина — не более 108 мм.

Масса — не более 10 г.

Условия эксплуатации СБМ20:

Температура окружающего воздуха — от -60° С до +70° С.

Допустимая температура, при которой возможна эксплуатация в течение не более 125 ч — +85° С.

Климатическое исполнение — УХЛ.

СБМ-20 счетчик излучения (СБМ-20 трубка) применяется для контроля радиации на объектах ядерной промышленности, в научных и учебных учреждениях, в гражданской обороне, медицине, и даже быту.

Счетчик Гейгера СБМ-20 изготовлен в виде герметичной тонкостенной гофрированной металлической трубки. По оси СБМ-20 Гейгера-Мюллера натянута тонкая проволока, а коаксиально с ней расположен металлический цилиндр. И трубка, и проволока являются электродами: трубка — катод, а проволока — анод. При попадании в детектор СБМ-20 заряженной частицы, некоторое количество газа ионизируется, и под воздействием напряжения между катодом и анодом ионы и электроны начинают двигаться — в трубке возникает кратковременный ток. Напряжение на аноде трубки кратковременно падает — получаем инвертированный импульс.

Детектор радиации СБМ-20 обладает относительно невысокими показателями точности измерения ионизирующего излучения, но достаточными для определения превышения допустимой для человека дозы излучения. Также датчик СБМ-20 (СБМ20) применяется во многих бытовых дозиметрах.

Описание на счетчик СБМ20 создано ООО «ЗАПАДПРИБОР» и добавлено на сайт zapadpribor.com. Использовать данный материал можно только с письменного разрешения правообладателя; указание ссылки на данную страницу zapadpribor.com/sbm20/ обязательно.

Фотографии на: СБМ20

СБМ20 фотография счетчика.

СБМ20 фотография счетчика.

СБМ20 фотография счетчика.

СБМ20 фотография счетчика.

СБМ20 вид спереди.

СБМ20 вид спереди.

СБМ20 вид сбоку.

СБМ20 вид сбоку.

Мы — дилеры заводов:

Внимание. Доставка ВСЕХ приборов, которые приведены на сайте, происходит по ВСЕЙ территории следующих стран: Российская Федерация, Украина, Республика Беларусь, Республика Казахстан и другие страны СНГ.

По России существует налаженная система поставки в такие города: Москва, Санкт-Петербург, Сургут, Нижневартовск, Омск, Пермь, Уфа, Норильск, Челябинск, Новокузнецк, Череповец, Альметьевск, Волгоград, Липецк Магнитогорск, Тольятти, Когалым, Кстово, Новый Уренгой, Нижнекамск, Нефтеюганск, Нижний Тагил, Ханты-Мансийск, Екатеринбург, Самара, Калининград, Надым, Ноябрьск, Выкса, Нижний Новгород, Калуга, Новосибирск, Ростов-на-Дону, Верхняя Пышма, Красноярск, Казань, Набережные Челны, Мурманск, Всеволожск, Ярославль, Кемерово, Рязань, Саратов, Тула, Усинск, Оренбург, Новотроицк, Краснодар, Ульяновск, Ижевск, Иркутск, Тюмень, Воронеж, Чебоксары, Нефтекамск, Великий Новгород, Тверь, Астрахань, Новомосковск, Томск, Прокопьевск, Пенза, Урай, Первоуральск, Белгород, Курск, Таганрог, Владимир, Нефтегорск, Киров, Брянск, Смоленск, Саранск, Улан-Удэ, Владивосток, Воркута, Подольск, Красногорск, Новоуральск, Новороссийск, Хабаровск, Железногорск, Кострома, Зеленогорск, Тамбов, Ставрополь, Светогорск, Жигулевск, Архангельск и другие города Российской Федерации.

По Украине существует налаженная система поставки в такие города: Киев, Харьков, Днепр (Днепропетровск), Одесса, Донецк, Львов, Запорожье, Николаев, Луганск, Винница, Симферополь, Херсон, Полтава, Чернигов, Черкассы, Сумы, Житомир, Кировоград, Хмельницкий, Ровно, Черновцы, Тернополь, Ивано-Франковск, Луцк, Ужгород и другие города Украины.

По Белоруссии существует налаженная система поставки в такие города: Минск, Витебск, Могилев, Гомель, Мозырь, Брест, Лида, Пинск, Орша, Полоцк, Гродно, Жодино, Молодечно и другие города Республики Беларусь.

По Казахстану существует налаженная система поставки в такие города: Астана, Алматы, Экибастуз, Павлодар, Актобе, Караганда, Уральск, Актау, Атырау, Аркалык, Балхаш, Жезказган, Кокшетау, Костанай, Тараз, Шымкент, Кызылорда, Лисаковск, Шахтинск, Петропавловск, Ридер, Рудный, Семей, Талдыкорган, Темиртау, Усть-Каменогорск и другие города Республики Казахстан.

Осуществляется поставка приборов в такие страны: Азербайджан (Баку), Армения (Ереван), Киргизстан (Бишкек), Молдавия (Кишинёв), Таджикистан (Душанбе), Туркменистан (Ашхабад), Узбекистан (Ташкент), Литва (Вильнюс), Латвия (Рига), Эстония (Таллин), Грузия (Тбилиси).

Вся текстовая и графическая информация на сайте несет информативный характер. Цвет, оттенок, материал, геометрические размеры, вес, содержание, комплект поставки и другие параметры товара представленого на сайте могут изменяться в зависимости от партии производства и года изготовления. Более подробную информацию уточняйте в отделе продаж.

Предприятие принимаем активное участие в таких процедурах как электронные торги, тендер, аукцион.

При отсутствии на сайте в техническом описании необходимой Вам информации о приборе Вы всегда можете обратиться к нам за помощью. Наши квалифицированные менеджеры уточнят для Вас технические характеристики на прибор из его технической документации: инструкция по эксплуатации, паспорт, формуляр, руководство по эксплуатации, схемы. При необходимости мы сделаем фотографии интересующего вас прибора, стенда или устройства.

Описание на приборы взято с технической документации или с технической литературы. Большинство фото изделий сделаны непосредственно нашими специалистами перед отгрузкой товара. В описании устройства предоставлены основные технические характеристики приборов: номинал, диапазон измерения, класс точности, шкала, напряжение питания, габариты (размер), вес. Если на сайте Вы увидели несоответствие названия прибора (модель) техническим характеристикам, фото или прикрепленным документам — сообщите об этом нам — Вы получите полезный подарок вместе с покупаемым прибором.

При необходимости, уточнить общий вес и габариты или размер отдельной части измерителя Вы можете в нашем сервисном центре. Наши инженеры помогут подобрать полный аналог или наиболее подходящую замену на интересующий вас прибор. Все аналоги и замена будут протестированы в одной с наших лабораторий на полное соответствие Вашим требованиям.

В технической документации на каждый прибор или изделие указывается информация по перечню и количеству содержания драгметаллов. В документации приводится точная масса в граммах содержания драгоценных металлов: золото Au, палладий Pd, платина Pt, серебро Ag, тантал Ta и другие металлы платиновой группы (МПГ) на единицу изделия. Данные драгметаллы находятся в природе в очень ограниченном количестве и поэтому имеют столь высокую цену. У нас на сайте Вы можете ознакомиться с техническими характеристиками приборов и получить сведения о содержании драгметаллов в приборах и радиодеталях производства СССР. Обращаем ваше внимание, что часто реальное содержание драгметаллов на 10-25% отличается от справочного в меньшую сторону! Цена драгметаллов будет зависить от их ценности и массы в граммах.

Основная особенность нашей фирмы — проведение объективных консультаций при выборе необходимого оборудования. В компании работает около 20 высококвалифицированных специалистов, которые готовы ответить на все ваши вопросы.

Иногда клиенты могут вводить название нашей компании неправильно — например, западпрыбор, западпрылад, западпрібор, западприлад, західприбор, західпрібор, захидприбор, захидприлад, захидпрібор, захидпрыбор, захидпрылад. Правильно — западприбор.

ООО «Западприбор» — это огромный выбор измерительного оборудования по лучшему соотношению цена и качество. Чтобы Вы могли купить приборы недорого, мы проводим мониторинг цен конкурентов и всегда готовы предложить более низкую цену. Мы продаем только качественные товары по самым лучшим ценам. На нашем сайте Вы можете дешево купить как последние новинки, так и проверенные временем приборы от лучших производителей.

На сайте постоянно действует акция «Куплю по лучшей цене» — если на другом интернет-ресурсе (доска объявлений, форум, или объявление другого онлайн-сервиса) у товара, представленного на нашем сайте, меньшая цена, то мы продадим Вам его еще дешевле! Покупателям также предоставляется дополнительная скидка за оставленный отзыв или фотографии применения наших товаров.

В прайс-листе указана не вся номенклатура предлагаемой продукции. Цены на товары, не вошедшие в прайс-лист можете узнать, связавшись с менеджерами. Также у наших менеджеров Вы можете получить подробную информацию о том, как дешево и выгодно купить измерительные приборы оптом и в розницу. Телефон и электронная почта для консультаций по вопросам приобретения, доставки или получения скидки приведены возле описания товара. У нас самые квалифицированные сотрудники, качественное оборудование и выгодная цена.

ООО «Западприбор» — официальный дилер заводов изготовителей измерительного оборудования. Наша цель — продажа товаров высокого качества с лучшими ценовыми предложениями и сервисом для наших клиентов. Наша компания может не только продать необходимый Вам прибор, но и предложить дополнительные услуги по его поверке, ремонту и монтажу. Чтобы у Вас остались приятные впечатления после покупки на нашем сайте, мы предусмотрели специальные гарантированные подарки к самым популярным товарам.

Завод «МЕТА» — это производитель наиболее надежных приборов для проведения техосмотра. Тормозной стенд СТМ производится именно на этом заводе.

Производитель ТМ «Инфракар» — это изготовитель многофункциональных приборов таких, как газоанализатор и дымомер.

Вы можете оставить отзывы на приобретенный у нас прибор, измеритель, устройство, индикатор или изделие. Ваш отзыв при Вашем согласии будет опубликован на сайте без указания контактной информации.

Наше предприятие осуществляет ремонт и сервисное обслуживание измерительной техники более чем 75 разных заводов производителей бывшего СССР и СНГ. Также мы осуществляем такие метрологические процедуры: калибровка, тарирование, градуирование, испытание средств измерительной техники.

Если Вы можете сделать ремонт устройства самостоятельно, то наши инженеры могут предоставить Вам полный комплект необходимой технической документации: электрическая схема, ТО, РЭ, ФО, ПС. Также мы располагаем обширной базой технических и метрологических документов: технические условия (ТУ), техническое задание (ТЗ), ГОСТ, отраслевой стандарт (ОСТ), методика поверки, методика аттестации, поверочная схема для более чем 3500 типов измерительной техники от производителя данного оборудования. Из сайта Вы можете скачать весь необходимый софт (программа, драйвер) необходимый для работы приобретенного устройства.

Также у нас есть библиотека нормативно-правовых документов, которые связаны с нашей сферой деятельности: закон, кодекс, постановление, указ, временное положение.

По требованию заказчика на каждый измерительный прибор предоставляется поверка или метрологическая аттестация. Наши сотрудники могут представлять Ваши интересы в таких метрологических организациях как Ростест (Росстандарт), Госстандарт, Госпотребстандарт, ЦЛИТ, ОГМетр.

ООО «Западприбор» является поставщиком амперметров, вольтметров, ваттметров, частотомеров, фазометров, шунтов и прочих приборов таких заводов-изготовителей измерительного оборудования, как: ПО «Электроточприбор» (М2044, М2051), г. Омск; ОАО «Приборостроительный завод «Вибратор» (М1611, Ц1611), г. Санкт-Петербург; ОАО «Краснодарский ЗИП» (Э365, Э377, Э378), ООО «ЗИП-Партнер» (Ц301, Ц302, Ц300) и ООО «ЗИП «Юримов» (М381, Ц33), г. Краснодар; ОАО«ВЗЭП» («Витебский завод электроизмерительных приборов») (Э8030, Э8021), г. Витебск; ОАО «Электроприбор» (М42300, М42301, М42303, М42304, М42305, М42306), г. Чебоксары; ОАО "Электроизмеритель" (Ц4342, Ц4352, Ц4353) г. Житомир; ПАО "Уманский завод "Мегомметр" (Ф4102, Ф4103, Ф4104, М4100), г. Умань.

голоса
Рейтинг статьи
Читайте так же:
Где нужно регистрировать счетчики
Ссылка на основную публикацию
Adblock
detector