Buderus-trade.ru

Теплотехника Будерус
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Урок по физике; Электрический ток. Действие тока

Урок по физике "Электрический ток. Действие тока"

Оборудование и материалы: источники тока, штатив, проволочный моток медной проволоки, магнит постоянный, мелкие металлические опилки.

ТСО: компьютер, презентация к уроку, видеоролик («Действия тока»), интерактивная доска.

План урока:

1. Организационный момент (2 мин.)
2. Изучение нового материала (25 мин.)
3. Закрепление, решение задач (15 мин.)
4. Подведение итогов, д/з. (3 мин.)

Без электрического тока невозможно представить современную жизнь. Задумайтесь на секунду, что электрический ток отключили по всему городу. Это значит, что ни в одной квартире, ни в одном учреждении не будут гореть лампы дневного света и лампы накаливания, работать компьютеры, компьютерная техника, в столовых поварам будет невозможно приготовить пищу, остановятся трамваи, троллейбусы, будет затруднено движение автобусов и машин. Будут закрыты магазины, банки, остановятся станки на предприятиях, прокатные станы в цехах.
В общем, работа города и его жителей будет парализована. Вот насколько современная цивилизация зависит от электрического тока.
А что понимают под «электрическим током», какими действиями он сопровождается – это сегодня и предстоит нам выяснить на уроке.

Изучение нового материала

1. Электрический ток

Слово «ток» означает движение и течение чего-либо. Например, в реках и водопроводных трубах течет вода, в трубопроводах – нефть или газ, и в этих случаях говорят о токе или потоке воды, нефти или газа.
Что может перемещаться – течь в проводах, соединяющих потребителей электрической энергии с электростанцией?
Мы уже знаем, что в телах имеются электроны, движением которых объясняется различные явления электризации тел. Электроны обладают отрицательным электрическим зарядом. Электрическим зарядом могут обладать и более крупные частицы вещества – ионы. Следовательно, в проводниках могут перемещаться различные свободные заряженные частицы.

Упорядоченное(направленное) движение заряженных частиц называют электрическим током. (Слайд 2)
За направление тока принимают направление движения положительно заряженных частиц. (Так сложилось исторически).
Чтобы в проводнике получить электрический ток, необходимо создать в нем электрическое поле. Электрическое поле в проводниках создается и может длительное время поддерживаться источниками электрического тока.

2. Действия тока

Движения частиц в проводнике мы непосредственно не видим. О наличии электрического тока приходится судить по тем действиям или явлениям, которые его сопровождают.

1) Тепловое действие тока – проводник, по которому течет ток, нагревается. (Исключение – сверхпроводники)

Опыт 1. (штатив, проволочный моток, источник тока. При прохождении по мотку электрического тока, проволока нагревается).

Объясняется тем, что при наличии тока в проводнике усиливается беспорядочное (тепловое) движение молекул, а значит и увеличивается внутренняя энергия проводника.

Внутренняя энергия проводника увеличивается потому, что свободные электроны в металлах или ионы в электролитах, перемещаясь под действием электрического поля, сталкиваются с молекулами или атомами вещества проводника и передают им свою энергию. (Слайд 3. Приборы, работа которых основана на тепловом действии тока).

2) Магнитное действие тока – ток оказывает силовое воздействие на соседние токи и намагниченные тела (проявляется у всех без исключения проводников).

Опыт 2. (штатив, проволочный моток, источник тока. При прохождении по мотку электрического тока, вокруг него образуется магнитное поле. Поднесем магнит – моток притягивается (или отталкивается). При выключении тока подобного не наблюдается. К мотку, по которому течет ток, так же будут притягиваться мелкие металлические опилки (принцип работы электромагнита), при отключении тока подобного не наблюдается). (Слайд 4. Приборы, работа которых основана на магнитном действии тока).

Читайте так же:
Автоматы по тепловому току как выбираются

3) Химическое действие тока – электрический ток может изменять состав проводника, например выделять его химические составные части (медь из медного купороса).

3. Сила тока

Действия электрического тока, которые мы наблюдали могут проявляться в разной степени – сильнее или слабее. Опыты доказывают, что интенсивность (степень действия) электрического тока зависит от заряда, проходящего в цепи в 1 с.

Электрический заряд, проходящий через поперечное сечение проводника за 1 с, определяет силу тока в цепи.

Сила тока равна отношению заряда ?q, переносимого через поперечное сечение проводника за интервал времени ?t, к этому интервалу времени. (стр.271)

Если сила тока со временем не изменяется, то ток называют постоянным.

I – сила тока, [А]
∆q – переносимый заряд, [Кл]
∆t – интервал времени, [с]

Переменный ток более опасен, чем постоянный. (Слайд5)

Силу тока измеряют амперметрами. Демонстрация амперметров, обозначение на схеме. (Слайд 6)

Сила тока зависит от заряда, переносимого каждой частицей, концентрации частиц, скорости их направленного движения и площади поперечного сечения проводника.

4. Скорость упорядоченного движения электронов в проводнике

Так быстро или медленно двигаются электроны в проводнике при протекании по нему тока? Для этого решим задачу: через медный проводник сечением 1мкм2 течет ток 1 А. Определите скорость упорядоченного движения электронов в медном проводнике?

Закрепление изученного материала:

  • Что называют электрическим током?
  • Что называют силой тока?
  • Какое направление тока принимают за положительное?
  • Назовите единицу измерения силы тока.
  • Электроны, летящие к экрану телевизионной трубки, образуют электронный пучок. В какую сторону направлен ток в пучке?
  • Что необходимо для возникновения и существования электрического тока?

(Слайд 8). Задача. Сколько электронов должно пройти в единицу времени через поперечное сечение проводника, чтобы включенный в цепь миллиамперметр показал 1мА?
Подведем итог нашему уроку, выставляем оценки за урок, взаимооценивание.
Домашнее задание:§104-105, №775(А.П. Лукашик), заполнить таблицу, где используются тепловое, химическое, магнитное действия тока.

Большая Энциклопедия Нефти и Газа

Тепловое движение электронов в активном сопротивлении носит хаотический характер. Под его влиянием возникают уравнительные токи, возвращающие сопротивление в нейтральное состояние. Чем выше температура и больше величина сопротивления, тем больше напряжение шумов на сопротивлении, так как с увеличением температуры возрастают скорости электронов и увеличивается мгновенное отклонение от нейтрального состояния, а с увеличением сопротивления уменьшаются уравнительные токи, возвращающие сопротивление в нейтральное состояние.  [1]

Тепловое движение электронов в резисторе носит хаотический характер. Под его влиянием возникают уравнительные токи, возвращающие резистор в нейтральное состояние. Чем выше температура и больше величина сопротивления, тем больше напряжение шумов на резисторе, так как с повышением температуры возрастают скорости электронов и увеличивается мгновенное отклонение от нейтрального состояния, а с увеличением сопротивления уменьшаются уравнительные токи, возвращающие резистор в нейтральное состояние.  [2]

Тепловое движение электронов , являясь хаотическим, не может привести к возникновению тока.  [3]

Тепловое движение электронов , летящих к сеткам и аноду, обусловливает малые беспорядочные изменения их траекторий, что приводит к флуктуа-циям токораспределения. При наличии динатронного эффекта из-за хаотичности процесса вторичной эмиссии флуктуации токораспределения усиливаются.  [4]

Тепловое движение электронов вследствие своей хаотичности не может привести к возникновению электрического тока.  [5]

Почему тепловое движение электронов не может привести к возникновению электрического тока.  [6]

Читайте так же:
Номинальный ток теплового расцепителя 125а

Энергия теплового движения электронов в металле недостаточна для того, чтобы они могли самопроизвольно выйти из металлической решетки.  [7]

Направление теплового движения электронов в проводниках хаотично.  [8]

Вследствие теплового движения электронов рассеянный поток не будет уже монохроматическим, а приобретает допле-ровскую форму распределения по спектру с полушириной 6Ajj ( 17), определяемой темп-рой электронов Тэ. Возможности наблюдения / затруднены чрезвычайной малостью а. Они становятся, по-видимому, реальными лишь при условии применения кватпповых генераторов, позволяющих получить достаточно большие значения / 0 и, вместе с тем, высокую степень монохроматичности потока. А), первичное излучение легко отфильтровывается. Экспериментальная проверка его еще не завершена.  [9]

Вследствие теплового движения электронов в каждом резисторе возникает напряжение шума, полоса частот которого простирается от низких до высоких частот. Шум называется белым, если спектральная плотность мощности шума dPJdf не зависит от частоты. Это условие в первом приближении выполняется для шума резисторов.  [11]

Хаотичность теплового движения электронов в катоде лампы приводит к тому, что в каждый момент времени количество электронов, обладающих энергией, достаточной для преодоления потенциальногобарь-ера, и находящихся близко от этой границы, оказывается различным. В результате возникают флуктуации тока эмиссии — дробовой эффект.  [12]

Учет теплового движения электронов среды приводит к пространственной дисперсии диэлектрической проницаемости. Было показано, что во многих случаях влияние пространственной дисперсии незначительно, но оно становится заметным, например, для релятивистской плазмы.  [13]

Средняя скорость теплового движения электронов равна нулю, поскольку в любых двух противоположных направлениях за данный промежуток времени проходит одинаковое число электронов с одинаковыми по величине, но противоположными по знаку скоростями. При наличии внешнего электрического поля все электроны проводимости совершают также регулярное движение в одном и том же направлении ( противоположном направлению поля, так как заряд электронов отрицателен), которое ( движение) накладывается на их хаотическое движение. Вследствие этого движение электронов оказывается не вполне хаотическим, а средняя скорость движения электронов не равной нулю, что и является причиной появления электрического тока.  [14]

Чем больше скорость теплового движения электронов , тем меньшее время они взаимодействуют с примесными ионами и тем меньше искривляются траектории движения электронов.  [15]

Электрический ток тепловое движение электронов в проводнике

Основы электротехники

Некоторые люди утверждают, что изучение электрических законов и формул — это пустая трата времени для установщика. В конце концов, мастер определяет сечение силового кабеля, место заземления или устраняет шум в аудиосистеме безо всяких формул и математики. Практический опыт — незаменимая вещь! Тем не менее, понимание того, что данный калибр провода мал или что является причиной шума в установленной звуковой системе, поможет Вам во многих практических ситуациях. Знание основ электротехники поможет Вам логически найти причину неисправности и быстро устранить ее.
Прежде чем перейти к математическим соотношениям, присутствующим в электротехнике, необходимо вкратце рассказать о двух типах тока, с которыми Вам придется работать в автомобиле с аудиосистемами. Это постоянный и переменный ток.

Электрический ток. При движении заряженных частиц в проводнике происходит перенос электрического заряда с одного места в другое. Однако если заряженные частицы совершают беспорядочное тепловое движение, как, например, свободные электроны в металле, то переноса заряда не происходит. Электрический заряд перемещается через поперечное сечение проводника лишь в том случае, если наряду с беспорядочным движением электроны участвуют в упорядоченном движении. В этом случае говорят, что в проводнике устанавливается электрический ток. Электрическим током называют упорядоченное движение заряженных частиц (электронов или ионов).
Электрический ток имеет определенное направление. О наличии электрического тока приходится судить по тем действиям или явлениям, которые его сопровождают.
Во-первых, проводник, по которому течет ток, нагревается.
Во-вторых, электрический ток может изменять химический состав проводника.
В-третьих, ток оказывает силовое воздействие на соседние токи, проводники и намагниченные тела.
Если в цепи устанавливается электрический ток, то это означает, что через поперечное сечение проводника все время переносится электрический заряд. Заряд, перенесенный в единицу времени, называется силой тока. Если сила тока со временем не меняется, то ток называют постоянным. Сила тока выражается в Амперах.
Для создания и поддержания движения заряженных частиц, необходима сила, действующая на них в определенном направлении. Если эта сила перестанет действовать, то ток прекратится. Эту силу принято называть электрическим полем или напряженностью электрического поля, которое порождает разность потенциалов на концах проводника и обеспечивает движение частиц. Когда разность потенциалов (напряжение) не меняется во времени, то в проводнике устанавливается постоянный электрический ток. Чем больше напряжение, тем выше сила тока. Зависимость между силой тока и напряжением выражает закон Ома:

Читайте так же:
Автоматический выключатель с тепловой отсечкой

Сила тока I прямо пропорциональна приложенному напряжению U и обратно пропорциональна сопротивлению проводника R.
Сопротивление — это основная электрическая характеристика проводника. От сопротивления зависит сила тока при заданном напряжении. Сопротивление измеряется в Омах. Проводник имеет сопротивление 1 Ом, если при разности потенциалов 1 В сила тока в нем равна 1 А. Сопротивление проводника представляет собой меру противодействия проводника установлению в нем электрического тока. Результат сопротивления проводника, — это его нагрев. Сопротивление проводника зависит от его длины и сечения. Чем больше длина и меньше сечение проводника, тем больше его сопротивление.

Закон Ома. Этот закон является одним из самых основных законов электротехники. Закон Ома описывает соотношение между силой тока, напряжением, сопротивлением и мощностью. Давайте поближе рассмотрим эти параметры и то, как они используются в автомобильной электротехнике.
Напряжение представляет из себя электрическое давление, которое передвигает заряженные частицы в контуре.
Ток — это скорость (интенсивность) потока электронов через сечение проводника. Электрическое сопротивление определяет электрическую проводимость, которой обладает проводник. Низкая проводимость оказывает сопротивление потоку электричества. Сопротивление провода определяется удельной электрической проводимостью материала, его сечением и длиной.
Следующие формулы вытекают из закна Ома:

I = U/R сила тока (Ампер)

U = IxR напряжение (Вольт)

R = U/I сопротивление (Ом)

В соответствии с законом Ома, если Вы хотите найти силу тока (I), Вам следует разделить напряжение (U) на сопротивление (R). Для нахождения напряжения умножаем силу тока на сопротивление. И для того, чтобы найти сопротивление необходимо разделить напряжение на силу тока.
Давайте подойдем к пониманию зависимости между силой тока, напряжением и сопротивлением через сравнение электрических характеристик с гидравликой.
Представьте, что у Вас имеется бак с водой. У основания бака установлен клапан, к которому примыкает труба. Другой конец трубы открыт. Если клапан открыть, то по трубе потечет вода в силу разности давления между началом трубы (высокое давление) и ее концом (низкое давление). Это аналогично разности потенциалов на концах проводника (напряжение), которое заставляет двигаться электроны по проводнику. То есть напряжение можно условно считать электрическим "давлением". Сила тока аналогична расходу воды, то есть количеству воды, протекающей через сечение трубы за определенный промежуток времени. Если уменьшить диаметр трубы, то поток воды уменьшится, поскольку увеличивается сопротивление. Это ограничение величины потока сравнимо с электрическим сопротивлением, которое держит в определенных пределах поток электронов. Соотношение между током, напряжением и сопротивлением схоже с водяным баком — меняется один параметр, и меняются все остальные.
Закон Ома поможет Вам избежать множество проблем, возникающих при установке автомобильных аудиосистем.
К примеру, Вы подаете питание на аудиосистему высокой мощности (Ватт), но сечение выбранного Вами провода оказывается слишком мало для подачи тока, необходимого системе. Сопротивление провода будет давать падение напряжения по всей его длине, когда усилители будут забирать энергию. Усилители, работающие при пониженном напряжении, могут перегреваться, генерировать низкие частоты (гул) или выходить из строя. В свою очередь, из-за большого сопротивления провод начнет перегреваться, что может привести к его возгоранию. Используя закон Ома можно рассчитать силу тока в проводнике, зная напряжение и потребляемую мощность. И далее, для найденной силы тока подбирается нужное сечение провода.
Закон Ома целесообразно применять, когда необходимо просчитать действующее сопротивление устройства (например, усилителя) в работающем контуре. Замерять сопротивление напрямую в цепи под напряжением нельзя, но его можно определить математически, пользуясь законом Ома.
Допустим, усилитель потребляет ток в 50 ампер при напряжении 12 вольт. Действующее (эффективное) сопротивление услителя будет равно:

Читайте так же:
Тепловое реле защищает от токов короткого замыкания

R = U/I
R = 12В/50А
Rэф = 0.24Ом

Электрическая энергия. Закон Ома имеет отношение к четвертому параметру контура — мощности. Существуют различные формы энергии: механическая, тепловая, ядерная и электрическая. Закон сохранения энергии утверждает, что нельзя создать или уничтожить энергию, она может только быть преобразована в другую форму энергии. Этот же закон действует в аудиоконтурах, где электрическая энергия преобразуется в теплоту и звук. Любой электрический прибор (лампа, электродвигатель) рассчитан на потребление определенной энергии в единицу времени. Электрическая мощность равна отношению работы тока к интервалу времени, за который произведена работа. Используя закон Ома, мощность тока представляется следующим образом:

Электрическая мощность измеряется в Ваттах. Один вольт переместит один ампер через один ом сопротивления с интенсивностью работы в один ватт. Из формулы мощности можно вывести формулу определения силы тока при заданном напряжении:

Электрический ток тепловое движение электронов в проводнике

§ 39. ЭЛЕКТРИЧЕСКИЙ ТОК И ЕГО ДЕЙСТВИЯ. СИЛА ТОКА.

Заряженные частицы, двигаясь по проводнику, могут нагревать его, намагничивать и изменять его химический состав.

Упорядоченное движение заряженных частиц в проводнике называют электрическим током. Кратковременный электрический ток, например, возникает в металлическом проводнике М, соединяющем два разноименно заряженных тела, А и Б (рис. 39а), когда под действием электрического поля его свободные электроны перемещаются от тела Б к А. Однако поток электронов между телами Б и А будет уменьшать заряды этих тел, и в конце концов, они станут незаряженными, и поле, вызвавшее электрический ток, исчезнет.

Электрический ток является результатом направленного движения свободных зарядов (электронов или ионов) в проводнике. В результате хаотичного (теплового) движения этих заряженных частиц направленного переноса заряда не происходит, а значит, электрический ток не возникает. Чтобы каждый раз не упоминать, какие частицы – ионы или электроны, переносят заряд в электрическом токе, за направление электрического тока условно принимается то направление, в котором бы двигались под действием данного электрического поля положительно заряженные частицы (см. голубую стрелку на рис. 39а).

Читайте так же:
Тепловое действие электрического тока закон джоуля ленца конспект урока

Прохождение электрического тока сопровождается многочисленными явлениями или действиями, по которым можно судить о его существовании. По характеру воздействия эти явления можно разделить на тепловые, магнитные и химические:

(1) Электрический ток нагревает проводник, по которому он протекает (тепловое действие). При этом некоторые проводники, например, вольфрамовая спираль осветительной лампы нагревается так сильно (до 2500 о С), что начинает даже светиться. Другие проводники, например, медные провода, по которым ток течёт к лампе, практически не нагреваются. Тепловое действие тока не зависит от направления тока, а определяется его величиной и свойствами проводника.

(2) Электрический ток действует на намагниченные тела, например, поворачивает магнитную стрелку, первоначально ориентированную вдоль проводника с током, перпендикулярно направлению тока (магнитное действие). Следует отметить, что магнитное действие тока зависит от величины тока и его направления и не зависит от вещества, из которого сделан проводник. Поэтому считают, что магнитное действие электрического тока – это его наиболее характерная черта, которая проявляется во всех проводниках.

(3) Электрический ток, проходя через растворы или расплавы электролитов, может разлагать их на составные части в результате процесса, называемого электролизом (химическое действие). Например, при пропускании тока через воду она разлагается на водород и кислород, и пузырьки этих газов образуются на электродах, между которыми пропускают электрический ток. В металлических проводниках электрический ток не вызывает никаких химических изменений.

Чем больше электрический ток, тем большее действие на проводник он оказывает. Чтобы охарактеризовать величину тока, предположим, что проводник имеет форму цилиндра с поперечным сечением S (см. рис. 39б). Силой тока I называют отношение заряда D q , переносимого этим током через поперечное сечение проводника за интервал времени D t , к величине этого интервала:

Единицей силы тока в СИ является ампер (А). При силе тока в 1 А через поперечное сечение проводника за 1 с проходит заряд в 1 Кл. Силу тока измеряют с помощью амперметров, в устройстве которых использовано магнитное действие электрического тока.

Если сила тока не изменяется со временем, то такой электрический ток называют постоянным. Условием существования постоянного электрического тока является наличие неизменного электрического поля в проводнике, или, другими словами, постоянного напряжения между концами проводника. Чтобы электрический ток через металлический проводник не прекращался, необходимо иметь устройство, перемещающее свободные электроны, пришедшие из Б в А, обратно в Б (см. рис. 39в). Такое устройство называют источником тока. Источник тока перемещает заряды на участке АБ против действующих на них электростатических сил.

Вопросы для повторения:

· Что такое электрический ток, и какое направление он имеет?

· Какие действия может оказывать электрический ток?

· Почему магнитное действие тока считают его самым характерным действием?

· Что называют силой тока, и в каких единицах её измеряют?

Рис. 39. (а) – кратковременный электрический ток между заряженными телами; (б) – к определению силы тока; (в) –п оддержание постоянного тока в металлическом проводнике М, соединяющем два заряженных тела.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector