Buderus-trade.ru

Теплотехника Будерус
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

16. Реверсивный счётчик, принцип работы

16. Реверсивный счётчик, принцип работы.

Реверсивные счетчики могут работать как в режиме сложения, так и в режиме вычитания. Если за период времени T поступит К импульсов при работе счетчика в режиме суммирования и N импульсов при работе счетчика в режиме вычитания, то состояние счетчика будет равно K-N ( при условии, что число импульсов K и N может однозначно подсчитываться счетчиком). Число K-N может быть как положительным, так и отрицательным.

В режиме вычитания входные импульсы подаются на вход «-1», при этом на вход «+1» подаётся лог. 0. В режиме сложения входные импульсы подаются на вход «+1», а на вход «-1» следует подать лог. 0.

17. Счётчики с предварительной установкой.

Счетчики с предварительной установкой начинают счет с двоичного числа, которое было предварительно записано в счетчик с помощью информационных входов при PE = 1. (Сигналы, подаваемые на информационные входы, устанавливают триггеры счётчика в соответствующее состояние.)

Т.е. на информационных входах D0–D3 устанавливаем число в двоичном коде. Запись в счётчик (предустановка) осуществляется при PE = 1. В этом случае на выходах Q0–Q3 появится двоичный код Qi = Di . С поступлением следующего тактового импульса счётчик начнёт счёт с установленного на выходах числа. Вход PE (preset enable) имеет приоритет над J,K и С.

18. Регистры. Общие положения. Регистры памяти. Регистры памяти с тремя состояниями.

Регистр – последовательностное логическое устройство, предназначенное для приема, хранения, передачи и преобразования информации.

Представляет собой упорядоченную последовательность триггеров, число которых соответствует числу разрядов в слове.

Регистр может выполнять следующие операции:

установка регистра в исходное состояние;

запись двоичного слова в регистр (в последовательной и/или параллельной форме);

сдвиг хранимой информации влево или вправо;

преобразование хранимой информации из последовательной формы в параллельную и наоборот;

поразрядные логические операции.

Различают регистры памяти (хранения) и регистры сдвига.

При подаче лог. 1 на вход ЕО регистр переходит в Z.состояние. Вывод, переведённый в Z-состояние, ведёт себя как не подключенный к схеме. Это состояние называется высокоимпедансным.

19. Регистра сдвига. Общие положения. Преобразование информации из последовательного кода в параллельный и обратно.

Данный регистр представляет собой последовательно соединенные двоичные ячейки памяти (триггеры). Под действием тактовых импульсов состояния ячеек памяти сдвигаются (передаются) на последующие ячейки.

Схема регистра позволяет преобразовать информацию из последовательного в параллельный код и наоборот.

Также при помощи сдвиговых регистров можно выполнять операции умножения и деления на 2:

Умножение хранящегося в регистре числа на 2 выполняется путем его сдвига влево и записью «0» в младший разряд.

Деление на 2 осуществляется сдвигом хранящегося в регистре числа вправо и записью «0» в старший разряд, причем деление на 2 целочисленное.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Реверсивные счетчики

Реверсивные счетчики могут работать как в режиме сложения, так и в режиме вычитания. Как следует из рис. 24.1, 24.3, для изменения режима работы необходимо подключать или прямой, или инверсный выход предыдущего триггера, входящего в счетчик, к Т-входу последующего.

Если за период времени T поступит К импульсов при работе счетчика в режиме суммирования и N импульсов при работе счетчика в режиме вычитания, то состояние счетчика будет равно K–N (при условии, что число импульсов K и N может однозначно подсчитываться счетчиком).

Число K–N может быть как положительным, так и отрицательным. При реализации устройств обработки часто необходимо знать знак числа, полученного при поступлении различного количества импульсов. Для этого необходимо образовать дополнительный выход – знаковый. Принцип построения знакового выхода будет рассмотрен после ознакомления со структурой реверсивных счетчиков.

Реверсивные счетчики разделяются на счетчики с общим входом cложения-вычитания "С" и с раздельными входами сло-жения "+1", вычитания "-1". К реверсивным счетчикам с общим входом сложения — вычитания относятся счетчики типа ИЕ12, ИЕ13, ИЕ16, ИЕ17, а к реверсивным счетчикам с раздельным входом сложения — вычитания ИС типа ИЕ6, ИЕ7.Условные графические обозначения реверсивных счетчиков приведены на рис. 24.11, а, б, в, г.

Читайте так же:
Счетчики турбинные миг норд

Назначение входов счетчиков:

— D1 – D4 — двоичный код, подаваемый на эти входы, записывается в триггеры счетчика в режиме “установка”;

— W – вход управления работой счетчика: при W = 0 — установка триггеров счетчика в состояние, определяемое входами D; при W = 1 – счет входных импульсов;

— R – прямой вход обнуления, обнуление происходит при подаче на него «единицы»

— С – прямой динамический синхровход;

— «≥ 15» – на выходах переноса «15(9)» появляется “ноль”, если счетчик находится в состоянии 15(9) и поступит импульс на вход «+1»;

— «≤ 0» – на выходе переноса «< 0» появляется “ноль”, если счетчик находится в нулевом состоянии и поступит импульс на вход «–1»;

— P – выход переноса, Р = 1, когда на всех выходах счетчика уровень либо логической 1, либо логического нуля;

Рис. 24.11. Реверсивные счетчики: а) ИЕ6, б) ИЕ7, в) ИЕ12, г) ИЕ13

— PC – синхронный выход переноса, аналогичен выходу Р=1. Отличие в том, что Р = 1 появится только при С = 1;

— U – вход управления режимом работы счетчика, при U = 0 – режим суммирования, а при U = 1 – режим вычитания;

— E, RP – входы стробирования счета (E) и переноса (RP). При E = 1 блокируется поступление входных импульсов. При RP=1 блокируется выход переноса – Р = 0.

Счетчики типа ИЕ12, ИЕ13 – реверсивные счетчики с об-щим входом сложения/вычитания (U). Такие счетчики не имеют входа обнуления R, обнуление можно производить, подавая нулевые уровни на вход W и входы D1, D2, D4, D8.

Функциональная схема реверсивного счетчика с общим прямым входом сложения-вычитания представлена на рис. 24.12.

Рис. 23.12. Функциональная схема реверсивного счетчика с общим входом сложения/вычитания.

В такой схеме при U = 1 реализуется режим суммирования, так как на выходе цепочки ЛЭ «2И-2И-2ИЛИ», «И» сформируется логическая 1, если все триггеры, расположенные до нее, будут в единичном состоянии. Это вызовет переключение следующего триггера при подаче синхроимпульса.

Например, состояние триггеров Q0 = 1, Q1 = 1, Q2 = 0. Все триггеры переключатся в противоположное состояние Q0 = 0, Q1 = 0, Q2 = 1, т.е. состояние счетчика изменилось с 3-го на 4-е.

При U = 0 переключение будет происходить, если все пре-дыдущие триггеры находились в нулевом состоянии, что соот-ветствует реализации режима вычитания. Для ИС типа ИЕ12, ИЕ13 вход сложения / вычитания инверсный. ЛЭ 3 формирует сигнал переноса Р = 1, если в режиме суммирования все триггеры находятся в единичном состоянии и RP=0 , а также Р = 1 в режиме вычитания, если все триггеры на-ходятся в нулевом состоянии и RP = 0. Эти два случая соответствуют переносу 1 в следующий разряд и заему 1.

ЛЭ 1, 2 реализуют параллельный перенос между триггера-ми. Максимальное время переключения равно сумме времен пе-реключения ЛЭ "2И-2И-2ИЛИ", "И" и триггера.

Счетчики типа ИЕ6, ИЕ7 – реверсивные счетчики с раз-дельными входами «+1», «–1» и с синхронной предустановкой. При W = 1, R = 0 счетчик подсчитывает количество импульсов, поступающих на входы «+1» и «-1». При W = 0, R = 0 двоичный код со входов В по фронту импульса либо +1, либо –1 переписывается на выход.

Функциональная схема реверсивного счетчика с раздель-ными входами сложения — вычитания представлена на рис. 24.13. В этом случае состояние счетчика увеличивается на 1 с каждым импульсом, поступающим на вход «+1», и уменьшается на 1 с каждым импульсом, поступающим на вход «–1». При выполне-нии условий переключения импульс с входов «+1» или «–1» по-ступает на вход Т-триггера и вызывает его переключение. Им-пульсы должны быть короткими и нулевыми. Параллельный перенос реализуется сразу в ЛЭ. Сигналы переноса 15 и заема 0 формируются раздельно. Длитель-ность импульсов переноса и заема определяется соответственно длительностью импульсов, поступающих на входы «+1» и «–1».

Рис. 24.13. Функциональная схема реверсивного счетчика с раздельными входами сложения / вычитания

Для получения многоразрядных счетчиков на основе ИС типа ИЕ6, ИЕ7 (рис. 24.14) требуется объединить входы управления W каждой ИС, а также входы R. Выход переноса « 15» ( 9) предыдущей ИС соединить с входом «+1» последующей, а выход заема « 0» – со входом «–1». При построении многоразрядных счетчиков на основе ИС типа ИЕ12, ИЕ13, ИЕ16, ИЕ17 (рис. 24.15) необходимо объеди-нить соответствующие входы управления ИС, а выход переноса предыдущей ИС соединить с синхровходом С последующей.

Читайте так же:
Как сбросить счетчик акб для ноутбука

Рис. 24.14. 8-разрядный реверсивный счетчик

Рис. 24.15. 8-разрядный реверсивный счетчик

Для счетчиков типа ИЕ12, ИЕ13 знаковый выход строится согласно рис. 24.16. Число поступающих импульсов фиксируется счетчиком в дополнительном коде, т.е. Qзнак = 1, если число отрицательное, и равно 0, если число положительное. Знаковый разряд фиксирует переход нулевого состояния в положительную или отрицательную сторону.

При поступлении импульса на вход С, если счетчик нахо-дится в нулевом состоянии (Р = 1), U = 1 (режим сложения), на выходе ЛЭ DD2 появляется уровень логического 0, который устанавливает Qзнак = 1 и Qзнак= 0. При U = 0 аналогично про-изойдет установка Qзнак = 1.

Рис. 24.16. Реверсивный счетчик со знаковым выходом

Наличие установочных входов D1, D2, D4, D8 позволяет реализовать счетчики с программируемым коэффициентом пере-счета (рис. 24.17).

Коэффициент пересчета М задается согласно выражениям: М = а + 2b + 4c + 8d + 16(e + 2f + 4g + 8h) для ИС типа ИЕ7, ИЕ13, ИЕ17;

М = а + 2b + 4c + 8d + 10(e + 2f + 4g + 8h) для ИС типа ИЕ6, ИЕ12, ИЕ16 путем выбора значений a, b, c, d, e, f, g, h, которые могут принимать значения 0 и 1. Полученная комбинация нулей и единиц подается на входы D1, D2, D4, D8.

Счетчики переводятся в режим вычитания. Выход переноса соединяется с входом установки исходного состояния по входам D.

Схемы работают следующим образом: когда триггеры счетчиков находятся в нулевом состоянии и поступает импульс с генератора, происходит установка исходного состояния по входам D. После этого исходное состояние с каждым импульсом уменьшается на единицу. Через (М-1) входной импульс счетчик снова примет нулевое состояние, а М-ый импульс произведет ус-тановку исходного состояния. Период повторения выходных импульсов равен , где T1 – период повторения входных импульсов.

Рис. 24.17. Счетчик с программируемым коэффициентом деления

Генератор линейного напряжения на основе реверсивных счетчиков (рис. 24.18) вырабатывает возрастающее напряжение при подключении генератора прямоугольных импульсов (ГИ) к входу «+1» и убывающее напряжение – к входу «–1». В процессе работы двоичный код на выходах счетчика бу-дет меняться по циклу от 0 до 15 (при подключении к входу «+1») или от 15 до 0 (при подключении к входу «–1»). При этом напряжение на выходе ЦАП будет изменяться скачками от U0ВЫХ до U1ВЫХ. Величина скачка dU определяется разрядностью счет-чика. Длительность линейного напряжения равна T = 2nT1, где T1 – период повторения входных импульсов.

Рис. 24.18. Генератор линейно изменяющегося напряжения

Если ступенчатое изменение напряжения не устраивает разработчика, то необходимо на выходе ЦАП поставить фильтр низких частот, который произведет сглаживание ступенек.

Презентация на тему Счетчики. Четырехразрядный суммирующий асинхронный двоичный счетчик

Презентация на тему Презентация на тему Счетчики. Четырехразрядный суммирующий асинхронный двоичный счетчик, предмет презентации: Разное. Этот материал содержит 13 слайдов. Красочные слайды и илюстрации помогут Вам заинтересовать свою аудиторию. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас — поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций ThePresentation.ru в закладки!

  • Главная
  • Разное
  • Счетчики. Четырехразрядный суммирующий асинхронный двоичный счетчик

Слайды и текст этой презентации

Счетчики — это цифровые устройства, предназначенные для подсчета импульсов в импульсной последовательности и выдачи результата в виде двоичного числа.
По принципу действия счетчики классифицируются:
— суммирующие;
— вычитающие;
— реверсивные.
По принципу представления выходной информации:
— двоичные;
— десятичные;
— двоично-десятичные.

По принципу синхронизации:
— асинхронные;
— синхронные.
Для построения логических схем счетчиков используются любые виды триггеров.
ИМС счетчиков маркируются буквенным сочетанием ИЕ, например, К155ИЕ4, К555ИЕ6, К1533ИЕ7 и т.д.

Читайте так же:
Какой самый лучший счетчик гейгера

Четырехразрядный суммирующий асинхронный двоичный счетчик

Разрядность счетчика определяется количеством используемых триггеров в его лог. схеме. Для построения четырехразрядного счетчика требуется 4, например JK-триггера. Для синтеза асинхронной суммирующей схемы необходимо из каждого триггера предварительно получить триггер типа Т, а затем их соединить последовательно, т.е. прямой выход каждого триггера соединить со счетным входом каждого последующего.

Путем объединения входов J и K и подачей на них уровня лог.1 задан счетный режим (счетный Т-триггер), и вход синхронизации С становится счетным входом для каждого триггера.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

В исходном состоянии на выходах установлены уровни лог.0. При поступлении первого счетного импульса по его переднему фронту переключается первая часть схемы младшего триггера, а по заднему – вторая.

с приходом каждого импульса, в момент его заднего фронта число на выходах увеличивается на единицу;
бесконечно долго счетчик считать не может, на пятнадцатом импульсе на выходах устанавливается максимально возможное состояние -1111;
на шестнадцатом импульсе на выходах устанавливается исходное состояние 0000;
на семнадцатом импульсе выходное состояние счетчика совпадает с состоянием установившемся после первого импульса, т.е. счет начинается заново и счетчик работает циклично;
каждый триггер делит частоту входной импульсной последовательности f в два раза. Поэтому счетчики еще называют счетчиками-делителями частоты.

Низкое быстродействие;
Формирование на выходах промежуточных комбинаций, которые могут дать ложные срабатывания в схеме, следующей за счетчиком.

Простота построения схемы.

Четырехразрядный суммирующий синхронный двоичный счетчик

В синхронных счетчиках все триггеры переключаются одновременно в следующее состояние, счетный импульс поступает одновременно на их счетные входы, соединенные параллельно и триггеры не образуют последовательного соединения между собой.

Например, уровень лог.1 необходимо на старший триггер подать после седьмого импульса, т.е. когда на выходах счетчика установлено состояние 0111. Это единственное состояние за цикл, когда на всех младших разрядах установлены лог.1. Для фиксации этого момента времени в схеме используется дополнительный лог. элемент И.

Вычитающие и реверсивные счетчики

В вычитающем счетчике поступление на вход очередного импульса вызывает уменьшение хранившегося в счетчике числа на единицу.
Вычитающие счетчики ничем не отличаются от суммирующих, однако в качестве выходов у них используются инверсные выходы. Исходному состоянию такого счетчика будет соответствовать комбинация 1111, с приходом каждого счетного импульса оно будет уменьшаться на единицу.
Реверсивный счетчик — счетчик, допускающий в процессе работы переключение из режима суммирования в режим вычитания. Для переключения режимов в схемах используется дополнительная логика.

Ограничение циклического коэффициента

При использовании ИМС счетчиков в различных устройствах не всегда требуется циклический коэффициент, равный 15. Часто требуется его меньшее значение, для чего необходимо коэффициент ограничивать до какого-либо меньшего значения.

УГО двоичного четырехразрядного счетчика, имеющего N = 15. ИМС имеет вход R, предназначенный для обнуления выходов (сброс) и поскольку он прямой, обнуление производится уровнем лог.1.

Если, например, необходимо, чтобы счетчик считал только до четырех импульсов, то это значит, что пятым — он должен обнулиться. На пятом импульсе на выходах установится состояние 0101. Выходное число содержит две единицы.

Микросхемы счётчики

Всем доброго времени суток! Сегодня буду рассказывать про счётчики, но не электрические или газовые, а про цифровые микросхемы счётчики. Счётчики являются, как и регистры, производными от триггеров, но в отличие от микросхем регистров, в микросхемах счётчиках связи между триггерами значительно сложнее и в результате функционал их больше, чем регистров.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Из самого названия данного типа цифровых микросхем понятно, что они занимаются подсчётом импульсов пришедших на их входы. То есть каждый пришедший импульс на вход счётчика увеличивает или уменьшает двоичный код на его выходах. Счётчики могут работать в различных режимах, которые определяется связями внутренних триггеров. Режим, в котором идёт увеличение выходного кода, называют режимом прямого счёта, а если идёт уменьшение выходного кода, то это режим обратного или инверсного счёта. Счётчики предназначены также для преобразования из двоичной системы счисления в десятичную систему, но существуют и другие типы счётчиков, например счётчики-делители, у которых на выходе частота импульсов в некоторое количество раз меньше частоты входных импульсов. Для микросхем счётчиков в стандартных сериях существует специальный суффикс ИЕ, например К555ИЕ19, К155ИЕ2.

Читайте так же:
Как начисляется плата за водоснабжение по счетчику

Все типы счётчиков можно разделить на три основные группы, которые различаются быстродействием:

  • асинхронные (или последовательные) счётчики;
  • синхронные счётчики с асинхронным переносом (или параллельные счётчики с последовательным переносом);
  • синхронные (или параллельные) счётчики.

Асинхронные счётчики

Данные типы счётчиков состоят из цепочёк JK-триггеров, которые работают в счётном режиме, когда выход предыдущего триггера служит входом для следующего. В такой схеме триггеры включаются последовательно, а, следовательно, и выходы счётчика также переключаются последовательно, один за другим (отсюда второе название асинхронных счётчиков – последовательные счётчики). Так как переключение разрядов происходит с некоторой задержкой, поэтому и сигналы на выходах счётчика появляются не одновременно с входным сигналом и между собой, то есть асинхронно.

Микросхемы асинхронных счётчиков применяются не очень часто, в качестве примера можно привести микросхемы типа ИЕ2 (четырёхразрядный двоично-десятичный счётчик), ИЕ5 (четырёх разрядный двоичный счётчик) и ИЕ19 (сдвоенный четырёхразрядный счётчик).

асинхронные счётчики

Асинхронные счётчики: слева направо ИЕ2, ИЕ5, ИЕ19.

Данные типы счётчиков имеют входы сброса в нуль (вход R), вход установки в 9 (вход S у ИЕ2), счётный или тактовый вход (вход С) и выходы, которые могут обозначаться как номера разрядов (0, 1, 2, 4) или как вес каждого разряда (1, 2, 4, 8).

Микросхема К555ИЕ2 относится к двоично-десятичным счётчикам, то есть счёт у неё идет от 1 до 9, а потом выводы обнуляются и счёт идёт сначала. Внутренне данный счётчик состоит из четырёх триггеров, которые разделены на две группы: один триггер (вход С1, выход 1) и три триггера (вход С2, выходы 2, 4, 8). Такая внутренняя организация позволяет значительно расширить применение данного типа микросхемы, например данную микросхему можно использовать в качестве делителя на 2, на 5 или на 10. Счётчик ИЕ2 имеет два входа для сброса в нуль объединенных по И, а так же два входа для установки в 9 тоже объединённых по И.

Для реализации счёта необходимо сбросить счётчик подачей на входы R высокого логического уровня, а на один из входов S сигнал низкого уровня. В таком режиме счётчик будет «обнулён» и последовательный счёт заблокирован. Чтобы восстановить функцию счета необходимо установить на входы R низкий уровень сигнала.

Для организации делителя на 2 необходимо подавать сигнал на С1, а снимать с выхода 1; делитель на 5 подавать сигнал на С2, а снимать с выхода 8; делитель на 10 выход 8 соединяют с С1, сигнал подают на С2, а снимают с выхода 1.

Микросхема К555ИЕ5 представляет собой двоичный счётчик, в отличие от ИЕ2 считает до 16 и сбрасывается в нуль. Также как и ИЕ2 состоит из двух групп триггеров со входами С1 и С2, а выходы 1 и 2,4,8. В отличии от ИЕ2 имеет только два входа сброса в нуль, а входов установки нет.

Микросхема К555ИЕ19 практически идентична двум микросхемам К555ИЕ5 и представляет собой два чётырёхразрядных двоичных счётчика, каждый счётчик имеет свой счётный вход С и вход сброса R. Если объединить выход 8 первого счётчика и вход С второго счётчика, то можно получить восьмиразрядный двоичный счётчик.

Синхронные счётчики с асинхронным переносом

Синхронные счётчики в отличие от асинхронных переключение разрядов идёт без задержки, то есть параллельно. Эта параллельность достигается за счёт более сложной внутренней связи между триггерами. Но также это привело к тому, что управлять данными счётчиками несколько сложнее, чем асинхронными. Зато возможностей у синхронных счётчиков значительно больше. Для увеличения разрядности синхронных счётчиков в данных типах счётчиков используется специальные выходы. От принципа формирования сигнала на этих выходах синхронные счётчики делятся на счётчики с асинхронным (последовательным) переносом и счётчики с синхронным (параллельным) переносом.

Читайте так же:
Сколько действительна поверка счетчиков

Основная суть работы синхронных счётчиков с асинхронным переносом заключается в следующем: переключение разрядов осуществляется одновременно, а сигнал переноса вырабатывается с некоторой задержкой. Быстродействие данных счётчиков выше, чем асинхронных, но ниже чем чисто синхронных. Типичными представителями синхронных счётчиков с асинхронным переносом являются микросхемы К555ИЕ6 и К555ИЕ7.

Синхронные счётчики с асинхронным переносом

Синхронные счётчики с асинхронным переносом: слева направо ИЕ6, ИЕ7.

Микросхемы ИЕ6 и ИЕ7 полностью одинаковы различие заключается в том, что ИЕ6 является двоично-десятичным счётчиком, а ИЕ7 – полностью двоичным. Данные счётчики являются реверсивными, то есть могут работать как на увеличения числа, так и на уменьшение, для этого они имеют счётные входы: +1 (увеличение по положительному фронту) и -1 (уменьшение по положительному фронту). Для выхода сигнала переноса при прямом счёте используется выход CR, а при обратном счёте вывод BR. Вход R является входом обнуления счётчика. Также есть возможность предварительной установки выходного кода параллельным переносом с входов D1, D2, D4, D8 при низком логическом уровне на входе WR.

После сброса счётчик начинает считать с нуля, либо с числа, которое установлено параллельным переносом. Двоично-десятичный счётчик считает до десяти, потом обнуляется и вырабатывает сигнал переноса на выходе CR или BR при обратном счёте. Двоичный счётчик же считает до 15 и происходит обнуление.

Синхронные счётчики с асинхронным переносом нашли более широкое применение, чем асинхронные счётчики: делители частоты, подсчёт импульсов, измерение интервалов времени, формировать последовательности импульсов и другое.

Синхронные счётчики

Данные типы счётчиков являются наиболее быстродействующими, однако это обуславливает самое сложное управление среди всех типов счётчиков. Одной из особенностей синхронных счётчиков является то, что сигнал переноса вырабатывается тогда, когда все выходы счётчика устанавливаются в единицу (при прямом счёте) или в нуль (при обратном). Также при включении нескольких счётчиков для увеличения разрядности, тактовые входы С объединяются, а сигнал переноса подается на вход разрешения счёта каждого последующего счётчика.

В серии микросхем входят несколько типов синхронных счётчиков, которые различаются способом счёта (двоичные или двоично-десятичные, реверсивные или нереверсивные) и управляющими сигналами (отсутствие или наличие сигнала сброса). Все счётчики данного типа имеют входы переноса и каскадирования.

Синхронные счётчики
Синхронные счётчики: слева направо ИЕ9(ИЕ10) и ИЕ12(ИЕ13).

Микросхемы К555ИЕ9 (ИЕ10) микросхемы различаются способом счёта ИЕ9 – двоично-десятичная, а ИЕ10 – двоичная. Данные микросхемы имеют счётный вход С, вход сброса R в нуль выходных выводов. Имеется возможность предварительной установки при нулевом уровне напряжения на входе разрешения предварительной установи EWR, вход Е0 – разрешение переноса и вход Е1 – разрешения счёта. Сигнал на выходе CR (сигнал переноса) вырабатывается при достижении максимального счёта и высоком уровне на входе Е0. Для работы счётчика должны быть высокие логические уровни на входах EWR, Е0 и Е1.

Микросхемы К555ИЕ12 (ИЕ13) также имеют одинаковое схемотехническое устройство и различаются способом счёта ИЕ12 – двоично-десятичный счётчик, а ИЕ13 – десятичный. Данные типы счётчиков реверсивные и допускают как прямой счёт, установкой нулевого уровня на входе Е0, так и обратный счёт, установкой высокого логического уровня на Е0, в остальном же входные и выходные выводы идентичны ИЕ9 и ИЕ10.

Синхронные счётчики нашли самое широкое применение в цифровых устройствах, так они могут полностью заменить функционал асинхронных и синхронных с асинхронным переносом счётчиков и к тому же имеют самое высокое быстродействие среди счётчиков.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector