Buderus-trade.ru

Теплотехника Будерус
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Нагревание проводника при прохождении электрического тока. Расчет тепла, выделяющегося в проводе. Преимущества электрического обогрева теплиц и парников. Мощность нагревательного кабеля или ленты. Поддержание температуры и влажности воздуха в инкубаторе.

РубрикаФизика и энергетика
Виддоклад
Языкрусский
Дата добавления05.12.2015
Размер файла13,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

«Использование теплового действия электрического тока в устройстве теплиц и инкубаторов»

Ученик 8 «А» класса

Тепловое действие электрического тока

Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды.

В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается в окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.

По мере увеличения температуры провода растет разность температур провода и окружающей среды, увеличивается количество тепла, отдаваемое проводом. В связи с этим рост температуры провода все более замедляется. Наконец, при некоторой температуре устанавливается тепловое равновесие: за одинаковое время количество теплоты выделяющегося в проводе становится равным количеству теплоты выделяющемуся во внешнюю среду.

Превращение электрической энергии в тепловую нашло широкое применение в технике и быту.

Использование теплового действия электрического тока в устройстве теплиц

Теплица из-за своих размеров, позволяет организовать весь цикл выращивания той или иной культуры в закрытом грунте.

электрический ток теплица инкубатор

В зависимости от вида овощей оптимальная температура в теплице должна составлять днем 16-25°С, а ночью на 4-8°С меньше, чем днем. Высокая температура по ночам и в пасмурные дни провоцирует слишком быстрый рост зеленой массы растения, что приводит к снижению урожайности и качества плодов.

Недорогим и эффективным способом обогрева теплиц и парников следует считать электрический.

Наиболее простыми в использовании являются переносные обогреватели. Некоторые типы электрических нагревателей для теплиц могут работать в режиме циркуляции: нагнетать воздух, не грея его. Эта функция полезна для улучшения микроклимата теплицы в жаркую погоду. Вторым из существующих способов обогрева теплиц, — кабельный обогрев грунта теплиц. Для обогрева грунта теплиц используется кабель с изоляцией из полипропилена, бронёй в виде оплётки из стальных оцинкованных проволок и оболочкой из изолирующего материала, диаметр наружный 6 мм, радиус изгиба 35 мм.

Мощность нагревательного кабеля или ленты не должна превышать 20 Вт/метр.

Третьим способом обогрева с помощью теплового действия электрического тока можно считать применение в теплицах инфракрасных потолочных обогревателей. Небольшого размера, они не занимают полезную площадь (стены, пол теплицы), потому что крепятся на потолке. Применение инфракрасных обогревателей позволяет создавать в теплице разные температурные зоны. Это удобно, в том случае, если в теплице находятся растения, привыкшие к разным температурным условиям (растения из разных климатических поясов). При помощи особого принципа обогрева, потолочные ИК обогреватели прогревают сначала землю, а уже потом окружающий воздух. Инфракрасные обогреватели излучают инфракрасное тепло, прогревающее поверхность грунта, а уже после прогрева грунта тепло передается окружающему воздуху.

Использование теплового действия электрического тока в устройстве инкубаторов

Управление системой увлажнения осуществляется реле увлажнения. Вода поступает каплями в сеточный испаритель на валу вентилятора и разносится им по всему шкафу.

Для домашнего разведения птенцов можно сделать самодельный инкубатор, используя тепловое действие электрического тока. В этом случае электрическая схема инкубатора будет состоять из терморегулятора, электронного термометра, таймера поворотного механизма и блока питания. Блок управления находящийся вне инкубатора, соединяется с ним гибким кабелем.

Внутри инкубатора находятся: нагреватель, вентилятор для принудительного циркулирования нагретого воздуха, двигатель поворотного механизма с редуктором для наклона лотков с яйцами, лампа освещения, датчики температуры терморегулятора и термометра.

Размещено на Allbest.ru

Подобные документы

Тепловое действие электрического тока. Сущность закона Джоуля-Ленца. Понятие теплицы и парника. Эффективность использования тепловентиляторов и кабельного обогрева грунта теплиц. Тепловое воздействие электрического тока в устройстве инкубаторов.

презентация [50,7 K], добавлен 26.11.2013

Образование электрического тока, существование, движение и взаимодействие заряженных частиц. Теория появления электричества при соприкосновении двух разнородных металлов, создание источника электрического тока, изучение действия электрического тока.

презентация [54,9 K], добавлен 28.01.2011

Понятие электрического тока как упорядоченного движения заряженных частиц. Виды электрических батарей и способы преобразования энергии. Устройство гальванического элемента, особенности работы аккумуляторов. Классификация источников тока и их применение.

презентация [2,2 M], добавлен 18.01.2012

Условия, необходимые для существования электрического тока. Достоинства и недостатки параллельного соединения проводников. Единица силы тока. Работа электрического тока в замкнутой электрической цепи. Закон Ома для участка цепи. Химическое действие тока.

презентация [398,2 K], добавлен 07.02.2015

Определение плотности тока на поверхности и на оси провода. Численное значение частоты тока. Влияние обратного провода на поле в прямом проводе. Особенности распространения электромагнитной волны в проводящей среде. Плотность тока и напряженности поля.

задача [46,9 K], добавлен 06.11.2011

Понятие электрического тока, выбор его направления, действие и сила. Движение частиц в проводнике, его свойства. Электрические цепи и виды соединений. Закон Джоуля-Ленца о количестве теплоты, выделяемое проводником, закон Ома о силе тока на участке цепи.

презентация [194,6 K], добавлен 15.05.2009

Сущность магнетизма, поле прямого бесконечно длинного тока. Форма правильных окружностей, описываемых силовыми линиями электрического поля элемента тока. Структура латентного поля тока. Закон Био-Савара, получение «магнитного» поля из электрического.

Презентация на тему Использование теплового действия электрического тока в устройстве теплиц и инкубаторов 8 класс

Презентация на тему Презентация на тему Использование теплового действия электрического тока в устройстве теплиц и инкубаторов 8 класс из раздела Технология. Доклад-презентацию можно скачать по ссылке внизу страницы. Эта презентация для класса содержит 4 слайдов. Для просмотра воспользуйтесь удобным проигрывателем, если материал оказался полезным для Вас — поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций TheSlide.ru в закладки!

  • Главная
  • Технология
  • Использование теплового действия электрического тока в устройстве теплиц и инкубаторов 8 класс

Слайды и текст этой презентации

Использование теплового действия электрического тока в устройстве теплиц и инкубаторовРаботу выполнила Крымская Елизавета 8б

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Работу выполнила Крымская Елизавета 8б

Инкубатор—это устройство для искусственного вывода сельскохозяйственной птицы (в основном кур). Активное их использование связано с тем, что

Инкубатор—это устройство для искусственного вывода сельскохозяйственной птицы (в основном кур). Активное их использование связано с тем, что птица выводится в них без высиживания, и поэтому от одной несушки можно получить больше потомства. Для успешного вывода молодняка птицы необходимо поддерживать в инкубаторе строго постоянную температуру. Для этого используется различная электроаппаратура. Рассмотрим ее простейшую схему.

В цепи течет ток от источника U только при замкнутом ключе К. При этом на резисторе R

В цепи течет ток от источника U только при замкнутом ключе К. При этом на резисторе R выделяется тепло по закону Джоуля- Ленца. Это тепло и нагревает яйца в инкубаторе. Ключ К — это термодатчик. Если температура за счет нагрева превысит необходимую, то ключ разомкнется из-за теплового расширения; ключ замкнут, только когда температура меньше либо равна необходимой.

Теплица — это крытое стеклом или пластиковой пленкой поме- щение, предназначенное для выращивания различных пищевых рас- тений,

Теплица — это крытое стеклом или пластиковой пленкой поме- щение, предназначенное для выращивания различных пищевых рас- тений, а также цветов. По сравнению с открытым грунтом, теплица имеет преимущество в том, что в ней можно выращивать растения круглый год, даже зимой. Для этого необходимо поддерживать дос- таточно высокую, оптимальную для данного вида растений темпе- ратуру. Довольно часто в теплицах применяют схемы, подобные описанным выше, при этом точность поддерживаемой температуры может быть несколько ниже, чем в инкубаторах.

Теплица — это крытое стеклом или пластиковой пленкой поме- щение, предназначенное для выращивания различных пищевых рас- тений, а также цветов. По сравнению с открытым грунтом, теплица имеет преимущество в том, что в ней можно выращивать растения круглый год, даже зимой. Для этого необходимо поддерживать дос- таточно высокую, оптимальную для данного вида растений темпе- ратуру. Довольно часто в теплицах применяют схемы, подобные описанным выше, при этом точность поддерживаемой температуры может быть несколько ниже, чем в инкубаторах.

Задание 55

Электрическое освещение имеет сравнительно небольшой возраст — около 200 лет.

Сначала была получена электрическая дуга В. В. Петровым в 1802 г., которая до сих пор используется в мощных прожекторах. Затем была изобретена лампа А. Н. Лодыгина, примененная в Петербурге для освещения улиц в 1873 г. Т. Эди­сон усовершенствовал незначительно ее и запа­тентовал изобретение в 1879 г. как лампу на­каливания в баллоне с откаченным воздухом. Задолго до Эдисона, американец К. В. Штарр подал в 1845 году в Великобритании заявку на патент, в описании которой говорится о том, как, поместив тело накала в вакууме и подведя к нему два электрода, можно довести его до свечения. А в 1854 г, то есть за 25 лет до Эдисона владе­лец часового магазина в Нью-Йорке, германский эмигрант Генрих Гебель представил в Нью-Йорке первые, подходящие для практического примене­ния лампы накаливания с угольными нитями со сроком горения около 200 часов. Он впервые применил лампы для рекламных целей. Для ни­ти накаливания он применил тонкую обугленную бамбуковую нить, помещенную в вакуум. Вместо колбы Гебель из соображений экономии использо­вал сначала флаконы от одеколона, а позднее — стеклянные трубки. В начале XX века появились лампы накаливания, заполненные аргоном и крип­тоном, что значительно увеличило срок службы этих ламп.

Люминесцентная лампа — газоразрядный ис­точник света, световой поток которого опреде­ляется в основном свечением люминофоров под воздействием ультрафиолетового излучения разря­да. Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превы­шать срок службы ламп накаливания при условии обеспечения достаточного качества электропита­ния, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновид­ностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора. Широкого коммерческого использо­вания она достигла к 1938 году. При работе люминесцентной лампы между двумя электродами, находящимися в противоположных концах лампы, возникает электрический разряд приводящий к по­явлению УФ-излучения. Это излучение невидимо для человеческого глаза, поэтому его преобра­зуют в видимый свет с помощью явления лю­минесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ-излучение и излучает видимый свет. Изменяя состав люминофора можно менять отте­нок свечения лампы. В последнее время все чаще стали применяться лазеры (изобретение XX века), как квантовые источники света во всевозможных шоу, для получения объемных изображений — голограмм, в некоторых средствах отображения информации.

Обогрев теплиц и инкубаторов

Тепловое действие электрического тока исполь­зуется в сельском хозяйстве для обогрева теплиц и инкубаторов.

Теплица — это помещение, предназначенное для выращивания различных растений, съедобных и цветов, в котором поддерживается нужная для растений температура круглый год, что позволяет вне сезонов снимать урожаи неоднократно. Один из существующих способов обогрева теплиц — кабельный обогрев.

Кабельный обогрев — это относительно недо­рогой, экономичный и надежный способ обогрева теплиц, при котором для предотвращения ухо­да тепла в грунт необходим слой теплоизоляции, причем в качестве материала теплоизоляции вы­бирается материалы, которые не впитывают влагу, например, пенополистирол, либо пенополиэтилен толщиной 5—10 см. Сверху слой теплоизоляции закрывается полиэтиленовой пленкой, играющей роль гидроизоляции. Поверх укладывается слой песка толщиной примерно 10 см, внутри которо­го лежит нагревательный кабель так, чтобы слой песка над кабелем был не менее 5 см. Шаг уклад­ки кабеля примерно 15 см. Поверх слоя песка укладывается сетка-рабица для защиты кабеля от повреждений. Затем насыпается слой плодородного грунта толщиной 20—25 см. Для регулирования температуры используются терморегуляторы.

Икубатор представляет собой шкаф, где по ярусам на специальных лотках размещены яй­ца. Он обогревается с помощью нагревательных проволочных спиралей, по которым пропускается электрический ток. Автоматически поддерживается температура в интервале от 37,7 до 38°С, для это­го используют терморегуляторы с биметаллической пластинкой или другого типа. Биметаллическая пластинка терморегулятора сделана из двух раз­нородных металлических пластин, например же­лезной и из сплава инвара и закреплена с одно­го конца. Когда температура в инкубаторе ниже нормы, биметаллический терморегулятор замыка­ет контакты электрической цепи и ток проходит по нагревательным спиралям. Если температура терморегулятора больше заданной, биметалличе­ская пластина так изгибается в сторону менее удлинившегося слоя, что отходит от контакта. Электрическая цепь нагревателя размыкается; она остается в таком положении до тех пор, пока тем­пература не ниже нормы; тогда биметаллический терморегулятор снова замкнет цепь.

§ 55. Лампа накаливания. Электрические нагревательные приборы

Основная часть современной лампы накаливания — спираль из тонкой вольфрамовой проволоки. Вольфрам — тугоплавкий металл, его температура плавления 3387 °С. В лампе накаливания вольфрамовая спираль нагревается до 3000 °С, при такой температуре она достигает белого каления и светится ярким светом. Спираль помещают в стеклянную колбу, из которой выкачивают насосом воздух, чтобы спираль не перегорала.

Но в вакууме вольфрам быстро испаряется, спираль становится тоньше и тоже сравнительно быстро перегорает. Чтобы предотвратить быстрое испарение вольфрама, лампы наполняют азотом, иногда инертными газами — криптоном или аргоном. Молекулы газа препятствуют выходу частиц вольфрама из нити, т. е. препятствуют разрушению накалённой нити.

Лодыгин Александр Николаевич

Лодыгин Александр Николаевич (1847-1923)
Русский электротехник, изобретатель лампы накаливания.

Эдисон Томас

Эдисон Томас (1847—1931)
Американский изобретатель, основатель крупных электротехнических компаний. Усовершенствовал телеграф, телефон, лампу накаливания для промышленного производства.

Газонаполненная лампа накаливания изображена на рисунке 87. Выдающимся изобретением в области освещения было создание русским инженером Александром Николаевичем Лодыгиным электрической лампы накаливания. Лампу, удобную для промышленного изготовления, с угольной нитью создал американский изобретатель Томас Эдисон.

Лампа накаливания

Рис. 87. Лампа накаливания:
1 — спираль; 2 — стеклянный баллон; 3 — цоколь; 4 — изолированное основание цоколя; 5 — пружинящий контакт патрона

Промышленность выпускает лампы накаливания на напряжение 220 В (для осветительной сети), 50 В (для железнодорожных вагонов), 12 В (для автомобилей), 3,5 и 2,5 В (для карманных фонарей).

Сегодня лампы накаливания, имеющие малый срок службы, а также низкую световую отдачу, вытесняются люминесцентными и светодиодными лампами.

Энергосберегающие лампочки (люминесцентные) более экономичны и служат гораздо дольше (рис. 88). В них 70% энергии преобразуется в свет, а в лампочке накаливания только 5%, остальная часть энергии (90—95%) переводится в тепло.

Энергосберегающая лампа

Рис. 88. Энергосберегающая лампа:
1 — электронный блок; 2 — стеклянная колба, покрытая люминофором; 3 — цоколь

Энергосберегающая лампочка состоит из колбы, наполненной парами ртути и аргона, и пускорегулирующего устройства. На внутреннюю поверхность колбы нанесено специальное вещество — люминофор, которое при воздействии ультрафиолетового излучения испускает видимый свет.

В светодиодных лампах электрический ток пропускают не по нити накала, а через миниатюрное электронное устройство (ЧИП — от англ. chip — миниатюрный), нанесённое на полупроводниковый кристалл. При прохождении электрического тока светодиод испускает свет.

Соотношение мощностей ламп

Соотношение мощностей ламп

В последние годы светодиодные лампы находят применение при освещении помещений, их устанавливают в светофорах, фарах автомобилей. Светодиоды используют как индикаторы включения на панелях приборов, цифровых и буквенных табло, подсветке мобильных телефонов, мониторов и др.

Тепловое действие тока используют в различных электронагревательных приборах и установках. В домашних условиях широко применяют электрические плиты, утюги, чайники, кипятильники. В промышленности тепловое действие тока используют для выплавки специальных сортов стали и многих других металлов, для электросварки. В сельском хозяйстве с помощью электрического тока обогревают теплицы, кормозапарники, инкубаторы, сушат зерно, приготовляют силос.

Основная часть всякого нагревательного электрического прибора — нагревательный элемент. Нагревательный элемент представляет собой проводник с большим удельным сопротивлением, способный, кроме того, выдерживать, не разрушаясь, нагревание до высокой температуры (1000—1200 °С). Чаще всего для изготовления нагревательного элемента применяют сплав никеля, железа, хрома и марганца, известный под названием «нихром». Удельное сопротивление нихрома

Удельное сопротивление нихрома

что примерно в 70 раз больше удельного сопротивления меди. Большое удельное сопротивление нихрома даёт возможность изготовлять из него весьма удобные — малые по размерам — нагревательные элементы.

Электронагревательные приборы

Электронагревательные приборы

В нагревательном элементе проводник в виде проволоки или ленты наматывается на пластинку из жароустойчивого материала: слюды, керамики. Так, например, нагревательным элементом в электрическом утюге служит ни-хромовая лента, от которой нагревается нижняя часть утюга.

голоса
Рейтинг статьи
Читайте так же:
Тепловоз с электрической передачей переменно переменного тока
Ссылка на основную публикацию
Adblock
detector