Buderus-trade.ru

Теплотехника Будерус
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

54. Экспериментальные методы исследования частиц

§ 54. Экспериментальные методы исследования частиц

Для дальнейшего развития ядерной физики (в частности, для исследования строения атомных ядер) необходимы были специальные устройства, с помощью которых можно было бы регистрировать ядра и различные частицы, а также изучать их взаимодействия.

Один из известных вам методов регистрации частиц — метод сцинтилляций — не даёт необходимой точности, так как результат подсчёта вспышек на экране в большой степени зависит от остроты зрения наблюдателя. Кроме того, длительное наблюдение оказывается невозможным, так как глаз быстро устаёт.

Более совершенным прибором для регистрации частиц является так называемый счётчик Гейгера, изобретённый в 1908 г. немецким физиком Гансом Гейгером.

Для рассмотрения устройства и принципа действия этого прибора обратимся к рисунку 159. Счётчик Гейгера состоит из металлического цилиндра, являющегося катодом (т. е. отрицательно заряженным электродом), и натянутой вдоль его оси тонкой проволочки — анода (т. е. положительного электрода). Катод и анод через сопротивление R присоединены к источнику высокого напряжения (порядка 200—1000 В), благодаря чему в пространстве между электродами возникает сильное электрическое поле. Оба электрода помещают в герметичную стеклянную трубку, заполненную разреженным газом (обычно аргоном).

Схема устройства счётчика Гейгера

Рис. 159. Схема устройства счётчика Гейгера

Пока газ не ионизирован, ток в электрической цепи источника напряжения отсутствует. Если же в трубку сквозь её стенки влетает какая-нибудь частица, способная ионизировать атомы газа, то в трубке образуется некоторое количество электрон-ионных пар. Электроны и ионы начинают двигаться к соответствующим электродам.

Если напряжённость электрического поля достаточно велика, то электроны на длине свободного пробега (т. е. между соударениями с молекулами газа) приобретают достаточно большую энергию и тоже ионизируют атомы газа, образуя новое поколение ионов и электронов, которые тоже могут принять участие в ионизации, и т. д. В трубке образуется так называемая электронно-ионная лавина, в результате чего происходит кратковременное и резкое возрастание силы тока в цепи и напряжения на сопротивлении R. Этот импульс напряжения, свидетельствующий о попадании в счётчик частицы, регистрируется специальным устройством.

Поскольку сопротивление R очень велико (порядка 10 9 Ом), то в момент протекания тока основная доля напряжения источника падает именно на нём, в результате чего напряжение между катодом и анодом резко уменьшается и разряд автоматически прекращается (так как это напряжение становится недостаточным для образования новых поколений электронн-ионных пар). Прибор готов к регистрации следующей частицы.

Счётчик Гейгера применяется в основном для регистрации электронов, но существуют модели, пригодные и для регистрации γ-квантов.

Счётчик позволяет только регистрировать тот факт, что через него пролетает частица. Гораздо большие возможности для изучения микромира даёт прибор, изобретённый шотландским физиком Чарлзом Вильсоном в 1912 г. и называемый камера Вильсона.

Камера Вильсона (рис. 160) состоит из невысокого стеклянного цилиндра СС со стеклянной крышкой LL (на рисунке цилиндр показан в разрезе). Внутри цилиндра может двигаться поршень Р. На дне камеры находится чёрная ткань FF. Благодаря тому что ткань увлажнена смесью воды с этиловым спиртом, воздух в камере насыщен парами этих жидкостей.

Схема устройства камеры Вильсона

Рис. 160. Схема устройства камеры Вильсона

При быстром движении поршня вниз находящиеся в камере воздух и пары жидкостей расширяются, их внутренняя энергия уменьшается, температура понижается.

В обычных условиях это вызвало бы конденсацию паров (появление тумана). Однако в камере Вильсона этого не происходит, так как из неё предварительно удаляются так называемые ядра конденсации (пылинки, ионы и пр.). Поэтому в данном случае при понижении температуры в камере пары жидкостей становятся пересыщенными, т. е. переходят в крайне неустойчивое состояние, при котором они будут легко конденсироваться на любых образующихся в камере ядрах конденсации, например на ионах.

Изучаемые частицы впускаются в камеру через тонкое окошко (иногда источник частиц помещают внутри камеры). Пролетая с большой скоростью через газ, частицы создают на своём пути ионы. Эти ионы и становятся ядрами конденсации, на которых пары жидкостей конденсируются в виде маленьких капелек (водяной пар конденсируется преимущественно на отрицательных ионах, пары этилового спирта — на положительных). Вдоль всего пути частицы возникает тонкий след из капелек (трек), благодаря чему её траектория движения становится видимой.

Если поместить камеру Вильсона в магнитное поле, то траектории заряженных частиц искривляются. По направлению изгиба следа можно судить о знаке заряда частицы, а по радиусу кривизны определять её массу, энергию, заряд.

Треки существуют в камере недолго, так как воздух нагревается, получая тепло от стенок камеры, и капельки испаряются. Чтобы получить новые следы, необходимо удалить имеющиеся ионы с помощью электрического поля, сжать воздух поршнем, выждать, пока воздух в камере, нагревшийся при сжатии, охладится, и произвести новое расширение.

Обычно треки частиц в камере Вильсона не только наблюдают, но и фотографируют. При этом камеру освещают сбоку мощным пучком световых лучей, как показано на рисунке 160.

С помощью камеры Вильсона был сделан ряд важнейших открытий в области ядерной физики и физики элементарных частиц.

Читайте так же:
Счетчики со сквозным параллельным переносом

Одной из разновидностей камеры Вильсона является изобретённая в 1952 г. пузырьковая камера. Она действует примерно по тому же принципу, что и камера Вильсона, но вместо пересыщенного пара в ней используется перегретая выше точки кипения жидкость (например, жидкий водород). При движении в этой жидкости заряженной частицы вдоль её траектории образуется ряд пузырьков пара. Пузырьковая камера обладает большим быстродействием по сравнению с камерой Вильсона.

Для регистрации каких частиц используют счетчик гейгера

Главная
Новое. Класс!ная физика
Вспомни физику:
7 класс
8 класс
9 класс
10-11 класс
видеоролики по физике
мультимедиа 7 кл.
мультимедиа 8 кл.
мультимедиа 9 кл.
мультимедиа 10-11 кл.
астрономия
тесты 7 кл.
тесты 8 кл.
тесты 9 кл.
демонстрац.таблицы
ЕГЭ
физсправочник

Азбука физики
Азбука физики. Класс!ная физика
Научные игрушки
Научные игрушки. Класс!ная физика
Простые опыты
Простые опыты. Класс!ная физика
Этюды об ученых
Этюды об ученых. Класс!ная физика
Читатели пишут
Читатели пишут. Класс!ная физика
Умные книжки
Умные книжки. Класс!ная физика
Есть вопросик?
Есть вопросик. Класс!ная физика
Его величество.
Его величество. Класс!ная физика
Музеи науки.
Музеи науки. Класс!ная физика
Достижения.
Достижения. Класс!ная физика
Загляни!
На урок

МЕТОДЫ НАБЛЮДЕНИЯ И РЕГИСТРАЦИИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

— служит для подсчета количества радиоактивных частиц ( в основном электронов ).

Это стеклянная трубка, заполненная газом (аргоном), с двумя электродами внутри (катод и анод).
При пролете частицы возникает ударная ионизация газа и возникает импульс электрического тока.


Достоинства:
— компактность
— эффективность
— быстродействие
— высокая точность (10ООО частиц/с).

Где используется:
— регистрация радиоактивных загрязнений на местности, в помещениях, одежды, продуктов и т.д.
— на объектах хранения радиоактивных материалов или с работающими ядерными реакторами
— при поиске залежей радиоактивной руды (U, Th)

— служит для наблюдения и фотографирования следов от пролета частиц (треков).

Внутренний объем камеры заполнен парами спирта или воды в перенасыщенном состоянии:
при опускании поршня уменьшается давление внутри камеры и понижается температура, в результате адиабатного процесса образуется перенасыщенный пар .
По следу пролета частицы конденсируются капельки влаги и образуется трек – видимый след.
При помещении камеры в магнитное поле по треку можно определить энергию, скорость, массу и заряд частицы.

По длине и толщине трека, по его искривлению в магнитном поле определяют характеристики пролетевшей радиоактивной частицы.
Например, альфа-частица дает сплошной толстый трек,
протон — тонкий трек,
электрон — пунктирный трек.

— вариант камеры Вильсона

При резком понижении поршня жидкость, находящаяся под высоким давление, переходит в перегретое состояние . При быстром движении частицы по следу образуются пузырьки пара , т.е. жидкость закипает, виден трек .

Преимущества перед камерой Вильсона:
— большая плотность среды, следовательно короткие треки
— частицы застревают в камере и можно проводить дальнейшее наблюдение частиц
— большее быстродействие.

Метод толстослойных фотоэмульсий

— служит для регистрации частиц
— позволяет регистрировать редкие явления из-за большого время экспозиции.

Фотоэмульсия содержит большое количество микрокристаллов бромида серебра.
Влетающие частицы ионизируют поверхность фотоэмульсий. Кристаллики AgВr распадаются под действием заряженных частиц и при проявлении выявляется след от пролета частицы — трек.
По длине и толщине трека можно определить энергию и массу частиц.

Другие страницы по теме «Атомная физика» за 10-11 класс:

 Класс!ная физика - YouTube

ЧТО МЫ ЗНАЕМ О ФИЗИКАХ?

Нильс Бор в 1961 году говорил: «На каждом этапе А.Эйнштейн бросал вызов науке , и не будь этих вызовов, развитие квантовой физики затянулось бы надолго».
___

В 1943 году Нильс Бор , спасаясь от оккупантов, вынужден был покинуть Копенгаген. Не рискуя взять с собой одну очень ценную для него вещь, он растворил ее в «царской водке» и колбу оставил в лаборатории. После освобождения Дании, вернувшись, он выделил из раствора то, что растворил, и по его заказу создали новую Нобелевскую медаль .
__

В 1933 году в лаборатории, которую возглавлял Эрнест Резерфорд , был сооружен мощный по тем временам ускоритель . Ученый очень гордился этой установкой и как-то раз, показывая ее одному из посетителей, заметил: «Эта штука обошлась нам очень дорого. На эти деньги можно целый год содержать одного аспиранта! Но разве какой-нибудь аспирант может сделать за год столько открытий !»

RSS-лента Класс!ная физика

Книги по физике книги по физике - повышение IQ
Викторина по физике
Викторина для физика
Физика в кадре
Физика в кадре
Учителю
В помощь учителю
Решение задач
Решение задач
Презентации
Учебные презентации

Конспект урока «Экспериментальные методы исследования частиц» (9 класс)

— систематизировать знания. Привить ученикам интерес к науке.

I. Организационный момент. Мотивировать учащихся к учебной деятельности посредством создания эмоциональной обстановки.

Добрый день, ребята. Сегодня у нас очень интересный урок, на котором мы с вами познакомимся со способами, которые могут позволить увидеть то, что недоступно человеку даже при использовании самых мощных микроскопов.

II. Проверка домашнего задания

1. 1) В чем заключалось открытие, сделанное Беккерелем в 1896 году? (открытие явления радиактивности) 2) Как стали называть способность атомов некоторых химических элементов к самопроизвольному излучению? (радиоактивность)

3) Как были названы частицы, входящие в состав радиоактивного излучения? (альфа, бета и гамма) 4) О чем свидетельствует явление радиоактивности? (атомы вещества имеют сложный состав)

5) Что происходит с радием в результате α-распада? (Превращается в ядро атома радона)

6) Какая часть атома – ядро или электронная оболочка – претерпевают изменения при радиоактивном распаде? (Ядро)

7) Объясните, что означает каждый символ в записи реакции α-распада радия.

Читайте так же:
Wix как подключить яндекс счетчик

8) Как называются верхнее и нижнее числа, стоящие перед буквенным обозначением элемента? (массовое и зарядовое числа)

9) На примере α-распада радия объясните, в чем заключаются законы сохранения заряда (зарядового числа) и массового числа?

10) Какой вывод следовал из открытия, сделанного Резерфордом и Содди? (ядра атомов имеют сложный состав, т.е. состоят из каких-то частиц)

Эти частицы в последствии стали называть элементарными частицами.

Само понятие Элементарная частица — это совокупный термин, под которым подразумеваются такие частицы, которые уже нельзя расщепить на меньшие кусочки. Всего физиками открыто более 350 элементарных частиц. Мы больше всего привыкли слышать о протонах, нейронах, электронах, фотонах, кварках. Это так называемые фундаментальные частицы.

Все наименьшие частицы имеют одно и тоже свойство: они могут взаимопревращаться под влиянием собственного воздействия. Одни имеют сильные электромагнитные свойства, другие слабые гравитационные. Но все элементарные частицы характеризуются по следующим параметрам:

  • Масса.
  • Спин — собственный момент импульса.
  • Электрический заряд.
  • Время жизни.
  • Чётность.
  • Магнитный момент.
  • Барионный заряд.
  • Лептонный заряд.

Любое вещество состоит из атомов, которые в свою очередь имеют ядро и электроны. Электроны, подобно планетам в Солнечной системе, двигаются вокруг ядра каждый по своей оси. Расстояние между ними очень большое, в атомных масштабах. Явление радиоактивности позволило ученым сделать вывод о сложном строении ядра, то есть, что и оно состоит их каких-то частиц, связь между ними настолько крепкая, что их невозможно разъединить ни одним известным науке способом. В этом и состоит суть экспериментальных методов исследования частиц.

Нам тяжело это представить, но ядерная связь превосходит все известные на земле силы в миллионы раз. Мы знаем электромагнитное взаимодействие, химический, ядерный взрыв. Но то, что сдерживает эти частицы в совокупности — это нечто иное. Возможно, это ключ к разгадке тайны возникновения мироздания. Именно поэтому так важно изучать экспериментальные методы изучения частиц.

Поэтому сегодня тема нашего урока: «Экспериментальные методы исследования частиц»

А кто может назвать цель нашего урока?
Цель: ознакомиться с основными экспериментальными методами исследования частиц.

Для вас я приготовил таблицы — заготовки, которые вы будете заполнять в ходе нашего урока.

Посмотрите, пожалуйста в ваши таблицы, сколько методов нам сегодня нужно изучить и назовите их.

С методом сцинтилляции вы уже знакомы ранее по опытам Резерфорда по исследованию состава и строению атомов (§ 66).

Кто может вспомнить и описать или прочитать как происходит регистрация частиц, использую данный метод? В чем его недостаток?

Теперь постарайтесь по аналогии самостоятельно найти ответы для следующего метода из § 68, но принцип действия давайте запишем вместе.

Эти таблицы остаются у вас, чтобы вы могли в любой момент могли вспомнить, какие есть методы для того, чтобы узнать больше о частицах.

Теперь я хочу проверить ваше домашнее задание, но просто задать вам вопросы, а чтобы вы сами смогли эти вопросы получить.

Я предложу вам задания, который закодированы QR -кодом.

Вам потребуется мобильный телефон и приложение QR -ридер.

Экспериментальные методы исследования частиц

Название метода

Принцип действия

Преимущества и недостатки

В местах попадания а-частиц в стеклянный экран, покрытый тонким слоем спец. вещества, возникают вспышки, которые наблюдаются с помощью микроскопа

Не даёт необходимой точности, так как результат подсчета вспышек в большей степени зависит от остроты зрения наблюдателя

Действие основано на ударной иониации газа

Фиксирует только факт пролета частицы

Камера Вильсона (используется пересыщенный пар)

Фиксируется траектория полёта заряженной частицы, вдоль которой возникают ионы, на которых конденсируется пар и появляются капельки жидкости (виден трек)

По трекам, их искривлению в магнитном поле можно судить о знак заряда, массе, энергии, заряде

Пузырьковая камера (используется перегретая выше точки кипения жидкость), разновидность камеры Вильсона

Фиксируется траекторию движения частицы, вдоль которой образуются пузырьки при закипании жидкости

Обладает большим быстродействием по сравнению с камерой Вильсона

Выбранный для просмотра документ Приложение 1.doc

Экспериментальные методы исследования частиц — это не обычная тема, а очень интересная и захватывающая экскурсия в мир молекулярной ядерной науки. Достичь такого уровня прогресса цивилизация смогла совсем недавно, и ученые до сих пор спорят, а нужны ли человечеству такие знания? Ведь если люди смогут повторить процесс атомного взрыва, который привел к появлению Вселенной, то может, разрушится не только наша планета, но и весь Космос.

О каких частицах идет речь и зачем их исследовать

Частично ответы на эти вопросы дает курс физики. Экспериментальные методы исследования частиц — это способ увидеть то, что недоступно человеку даже при использовании самых мощных микроскопов. Но обо всем по-порядку.

Элементарная частица — это совокупный термин, под которым подразумеваются такие частицы, которые уже нельзя расщепить на меньшие кусочки. Всего физиками открыто более 350 элементарных частиц. Мы больше всего привыкли слышать о протонах, нейронах, электронах, фотонах, кварках. Это так называемые фундаментальные частицы.

Характеристика элементарных частиц

Все наименьшие частицы имеют одно и тоже свойство: они могут взаимопревращаться под влиянием собственного воздействия. Одни имеют сильные электромагнитные свойства, другие слабые гравитационные. Но все элементарные частицы характеризуются по следующим параметрам:

  • Масса.
  • Спин — собственный момент импульса.
  • Электрический заряд.
  • Время жизни.
  • Четность.
  • Магнитный момент.
  • Барионный заряд.
  • Лептонный заряд.
Читайте так же:
Brother dcp 9020cdw сброс счетчика тонера

Краткий экскурс в теорию строения вещества

Любое вещество состоит из атомов, которые в свою очередь имеют ядро и электроны. Электроны, подобно планетам в Солнечной системе, двигаются вокруг ядра каждый по своей оси. Расстояние между ними очень большое, в атомных масштабах. Ядро состоит из протонов и нейронов, связь между ними настолько крепкая, что их невозможно разъединить ни одним известным науке способом. В этом и состоит суть экспериментальных методов исследования частиц (кратко).

Нам тяжело это представить, но ядерная связь превосходит все известные на земле силы в миллионы раз. Мы знаем электромагнитное взаимодействие, химический, ядерный взрыв. Но то, что сдерживает протоны и нейроны в совокупности — это нечто иное. Возможно, это ключ к разгадке тайны возникновения мироздания. Именно поэтому так важно изучать экспериментальные методы изучения частиц.

Многочисленные опыты натолкнули ученых на мысль, что нейроны состоят из еще меньших единиц и назвали их кварками. Что находится внутри них, пока не известно. Но кварки — это неразделяемые единицы. То есть, выделить одну не получается никаким способом. Если ученые используют экспериментальный метод исследования частиц с целью выделить один кварк, то сколько бы попыток они не предпринимали, всегда выделяется минимум два кварка. Это еще раз подтверждает нерушимую силу ядерного потенциала.

Какие существуют методы исследования частиц

Перейдем непосредственно к экспериментальным методам исследования частиц (таблица 1).

Счетчик Гейгера — это просто

В связи с экологическими последствиями деятельности человека, связанной с атомной энергетикой, а также промышленностью (в том числе военной), использующую радиоактивные вещества как компонент или основу своей продукции изучение основ радиационной безопасности и радиационной дозиметрии становится сегодня достаточно актуальной темой. Помимо природных источников ионизирующего излучения с каждым годом все больше и больше появляется мест, загрязненных радиацией впоследствии человеческой деятельности. Таким образом, чтобы сохранить свое здоровье и здоровье своих близких необходимо знать степень зараженности той или иной местности или предметов и пищи. В этом может помочь дозиметр – прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени.

Прежде чем приступать к изготовлению (или же покупке) данного устройства необходимо иметь представление о природе измеряемого параметра. Ионизирующее излучение (радиация) – это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество. Разделяется на несколько видов. Альфа-излучение представляет собой поток альфа частиц – ядер гелия-4, альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги, поэтому опасность представляет в основном при попадании внутрь организма. Бета-излучение – это поток электронов, возникающих при бета-распаде, для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров. Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом, для защиты эффективны тяжелые элементы (свинец и т.п.) слоем в несколько сантиметров. Проникающая способность всех видов ионизирующего излучения зависит от энергии.

Для регистрации ионизирующего излучения в основном используются счетчики Гейгера-Мюллера. Это простое и эффективное устройство обычно представляет собой цилиндр металлический или стеклянный металлизированный изнутри и тонкой металлической нити, натянутой по оси этого цилиндра, сам цилиндр наполняется разреженным газом. Принцип работы основан на ударной ионизации. При попадании на стенки счетчика ионизирующего излучения выбивают из него электроны, электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, приводящая к размножению первичных носителей. При достаточно большой напряженности поля энергии этих ионов становится достаточной, чтобы порождать вторичные лавины, способные поддерживать самостоятельный разряд, в результате чего ток через счетчик резко возрастает.

Не все счетчики Гейгера могут регистрировать все виды ионизирующего излучения. В основном они чувствительны к одному излучению – альфа, бета или гамма-излучению, но часто так же в некоторой степени могут регистрировать и другое излучение. Так, например, счетчик Гейгера СИ-8Б предназначен для регистрации мягкого бета-излучения (да, в зависимости от энергии частиц излучение может разделяться на мягкое и жесткое), однако данный датчик так же в некоторой степени чувствителен к альфа-излучению и к гамма-излучению.

Однако, приближаясь все-таки к конструкции статьи, наша задача сделать максимально простой, естественно портативный, счетчик Гейгера или вернее сказать дозиметр. Для изготовления этого устройства мне удалось раздобыть только СБМ-20. Этот счетчик Гейгера предназначен для регистрации жесткого бета- и гамма излучения. Как и большинство других счетчиков, СБМ-20 работает при напряжении 400 вольт.

Основные характеристики счетчика Гейгера-Мюллера СБМ-20 (таблица из справочника):

Читайте так же:
Bizhub c220 сбросить счетчик

Данный счетчик обладает относительно невысокими показателями точности измерения ионизирующего излучения, но достаточными для определения превышения допустимой для человека дозы излучения. СБМ-20 применяется во многих бытовых дозиметрах в настоящее время. Для улучшения показателей часто используется сразу несколько трубок. А для увеличения точности измерения гамма-излучения дозиметры оснащаются фильтрами бета-излучения, в этом случае дозиметр регистрирует только гамма-излучение, но зато достаточно точно.

При измерении дозы радиации необходимо учитывать некоторые факторы, которые могут быть важны. Даже при полном отсутствии источников ионизирующего излучения счетчик Гейгера будет давать некоторое количество импульсов. Это так называемый собственный фон счетчика. Сюда так же относится несколько факторов: радиоактивное загрязнение материалов самого счетчика, спонтанная эмиссия электронов из катода счетчика и космическое излучение. Все это дает некоторое количество «лишних» импульсов в единицу времени.

Итак, схема простого дозиметра на основе счетчика Гейгера СБМ-20:

Схему собираю на макетной плате:

Схема не содержит дефицитных деталей (кроме, естественно, самого счетчика) и не содержит программируемых элементов (микроконтроллеров), что позволит собрать схему в течении короткого времени без особого труда. Однако такой дозиметр не содержит шкалы, и определять дозу радиации необходимо на слух по количеству щелчков. Такой вот классический вариант. Схема состоит из преобразователя напряжения 9 вольт – 400 вольт.

На микросхеме NE555 выполнен мультивибратор, частота работы которого составляет примерно 14 кГц. Для увеличения частоты работы можно уменьшить номинал резистора R1 примерно до 2,7 кОм. Это будет полезно, если выбранный вами дроссель (а может и изготовленный) будет издавать писк – при увеличении частоты работы писк исчезнет. Дроссель L1 необходим номиналом 1000 – 4000 мкГн. Быстрее всего можно найти подходящий дроссель в сгоревшей энергосберегающей лампочке. Такой дроссель и применен в схеме, на фото выше он намотан на сердечнике, которые обычно используют для изготовления импульсных трансформаторов. Транзистор T1 можно использовать любой другой полевой n-канальный с напряжением сток-исток не менее 400 вольт, а лучше больше. Такой преобразователь даст всего несколько миллиампер тока при напряжении 400 вольт, но для работы счетчика Гейгера этого хватит с головой несколько раз. После отключения питания от схемы на заряженном конденсаторе C3 схема будет работать еще примерно секунд 20-30, учитывая его небольшую емкость. Супрессор VD2 ограничивает напряжение на уровне 400 вольт. Конденсатор C3 необходимо использовать на напряжение не менее 400 — 450 вольт.

Далее схема состоит из непосредственно самого счетчика Гейгера RO1 и цепи «озвучивания» импульсов счетчика.

В качестве Ls1 можно использовать любой пьезодинамик или динамик. При отсутствии ионизирующего излучения ток через резисторы R2 – R4 не протекает (на фото на макетной плате пять резисторов, но общее их сопротивление соответствует схеме). Как только на счетчик Гейгера попадет соответствующая частица внутри датчика происходит ионизация газа и его сопротивление резко уменьшается вследствие чего возникает импульс тока. Конденсатор С4 отсекает постоянную часть и пропускает на динамик только импульс тока. Слышим щелчок.

В моем случае в качестве источника питания используется две аккумуляторных батареи от старых телефонов (две, так как необходимое питание должно быть более 5,5 вольт для запуска работы схемы в силу примененной элементной базы).

Итак, схема работает, изредка пощелкивает. Теперь как это использовать. Самый простой вариант – это пощелкивает немного – все хорошо, щелкает часто или вообще непрерывно – плохо. Другой вариант – это примерно подсчитываем количество импульсов за минуту и переводим количество щелчков в мкР/ч. Для этого из справочника необходимо взять значение чувствительности счетчика Гейгера. Однако в разных источника всегда немного разные цифры. В идеальном случае необходимо провести лабораторные замеры для выбранного счетчика Гейгера с эталонными источниками излучения. Так для СБМ-20 значение чувствительности варьируется в пределах от 60 до 78 имп/мкР по разным источникам и справочникам. Так вот, подсчитали количество импульсов за одну минуту, далее это число умножаем на 60 для аппроксимации числа импульсов за один час и все это разделить на чувствительность датчика, то есть на 60 или 78 или что у вас ближе к действительности получается и в итоге получаем значение в мкР/ч. Для более достоверного значения необходимо сделать несколько замеров и посчитать между ними среднеарифметическое значение. Верхний предел безопасного уровня радиации составляет примерно 20 — 25 мкР/ч. Допустимый уровень составляет примерно до 50 мкР/ч. В разных странах цифры могут отличаться.

P.S. На рассмотрение этой темы меня подтолкнула статья о концентрации газа радон, проникающего в помещения, воду и т.д. в различных регионах страны и его источниках.

Способы наблюдения и регистрации заряженных частиц

В начале XX в. были разработаны методы исследования явлений атомной физики и созданы приборы, позволившие не только выяснить основные вопросы строения атомов, но и наблюдать превращения химических элементов.

Трудность создания таких приборов заключалась в том, что используемые в экспериментах заряженные частицы представляют собой ионизированные атомы каких-либо элементов или, например, электроны, и прибор должен регистрировать попадание в него лишь одной частицы или делать видимой траекторию ее движения.

Читайте так же:
Счетчик жидкости кцжу ту

В качестве одного из первых и простейших приборов для регистрации частиц был использован экран, покрытый люминесцирующим составом. В той точке экрана, куда попадает частица с достаточно большой энергией, возникает вспышка — сцинтилляция (от латинского «сцинтилляцио» — сверкание, вспышка).

Первый основной прибор для регистрации частиц был изобретен в 1908 г. Г. Гейгером. После того, как этот прибор был усовершенствован В. Мюллером, он мог подсчитывать число попадающих в него частиц. Действие счетчика Гейгера — Мюллера основано на том, что пролетающие через газ заряженные частицы ионизируют встречающиеся на их пути атомы газа: отрицательно заряженная частица, отталкивая электроны, выбивает их из атомов, а положительно заряженная частица притягивает электроны и вырывает их из атомов.

Счетчик состоит из полого металлического цилиндра, диаметром около 3 см (рис. 37.1), с окном из тонкого стекла или алюминия. По оси цилиндра проходит изолированная от стенок металлическая нить. Цилиндр (камера) заполняется разреженным газом, например, аргоном. Между стенками цилиндра и нитью создается напряжение порядка 1500 В, недостаточное для образования самостоятельного разряда. Нить заземляется через большое сопротивление R. При попадании в камеру частицы с большой энергией происходит ионизация атомов газа на пути этой частицы, и между стенками и нитью возникает разряд. Разрядный ток создает большое падение напряжения на сопротивлении R, и напряжение между нитью и стенками сильно уменьшается. Поэтому разряд быстро прекращается. После прекращения тока все напряжение вновь сосредоточивается между стенками камеры и нитью, и счетчик подготовлен к регистрации новой частицы. Напряжение с сопротивления R подается на вход усилительной лампы, в анодную цепь которой включается счетный механизм.

Способность частиц большой энергии ионизировать атомы газа используются и в одном из самых замечательных приборов современной физики — в камере Вильсона. В 1911 г. английский ученый Ч. Вильсон построил прибор, с помощью которого можно было видеть и фотографировать траектории заряженных частиц.

Камера Вильсона (рис. 37.2) состоит из цилиндра с поршнем; верхняя часть цилиндра сделана из прозрачного материала. В камеру вводится небольшое количество воды или спирта, и внутри нее образуется смесь паров и воздуха. При быстром опускании поршня смесь адиабатически расширяется и охлаждается, поэтому воздух в камере оказывается пересыщенным парами.

Если воздух очищен от пылинок, то превращение избытка пара в жидкость затруднено из-за отсутствия центров конденсации. Однако центрами конденсации могут служить и ионы. Поэтому, если через камеру пролетает в это время заряженная частица, ионизирующая на своем пути молекулы воздуха, то на цепочке ионов происходит конденсация паров и траектория движения частицы внутри камеры получается отмеченной нитью тумана, т. е. становится видимой. Тепловое движение воздуха быстро размывает нити тумана, и траектории частиц видны отчетливо лишь около 0,1 с, что. однако, достаточно для фотографирования.

Вид траектории на фотоснимке часто позволяет судить о природе частицы и величине ее энергии. Так, альфа-частицы оставляют сравнительно толстый сплошной след, протоны — более тонкий, а электроны — пунктирный след. Одна из фотографий альфа-частиц в камере Вильсона показана на рис. 37.3.

Чтобы подготовить камеру к действию и очистить ее от оставшихся ионов, внутри нее создают электрическое поле, притягивающее ионы к электродам, где они нейтрализуются.

Как говорилось выше, в камере Вильсона для получения следов частиц используется конденсация пересыщенного пара, т. е. превращение его в жидкость. Для этой же цели можно использовать обратное явление, т. е. превращение жидкости в пар. Если жидкость заключить в замкнутый сосуд с поршнем и при помощи поршня создать повышенное давление, а затем резким перемещением поршня уменьшить давление в жидкости, то при соответствующей температуре жидкость может оказаться в перегретом состоянии. Если через такую жидкость пролетит заряженная частица, то вдоль ее траектории жидкость закипит, поскольку образовавшиеся в жидкости ноны служат центрами парообразования. При этом траектория частицы отмечается цепочкой пузырьков пара, т. е. делается видимой. На этом принципе основано действие пузырьковой камеры.

При изучении следов частиц с большой энергией пузырьковая камера удобнее камеры Вильсона, так как при движении в жидкости частица теряет значительно больше энергии, чем в газе. Во многих случаях это позволяет значительно точнее определить направление движения частицы и ее энергию. В настоящее время имеются пузырьковые камеры диаметром около 2 м. Они заполняются жидким водородом. Следы частиц в жидком водороде получаются очень отчетливыми.

Для регистрации частиц и получения их следов служит также метод толстослойных фотопластинок. Он основан на том, что пролетающие сквозь фотоэмульсию частицы действуют на зерна бромистого серебра, поэтому оставленный частицами след после проявления фотопластинки становится видимым (рис. 37.4) и его можно исследовать с помощью микроскопа. Чтобы след был достаточно длинным, используются толстые слои фотоэмульсии.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector